DocuSnap: i) AL e S4BT

%
$ B
2 I
% B
£l ZFR:

RS EARR

C TR, PR, HEE, R, HEA

521370910109, 521370910005, 521370910142,
521370910181, 521021910711

INaERL
VAR
B ST TAR

ot

202547 |

A Dissertation Submitted to

Shanghai Jiao Tong University for the Degree of Bachelor

DOCUSNAP: YOUR AI-POWERED PERSONAL
DOCUMENT ASSISTANT

Author: Yang Zijun, Peng Jingjia, Zhou Ziming, Qu Minyang,
Tang Huijie

Supervisor: Pi Yibo

University of Michigan-Shanghai Jiao Tong University Joint Institute
Shanghai Jiao Tong University
Shanghai, P.R. China
July, 2025

b=t e
FALiR R eItk

ARNREFEI: PrE A 0ne 30, A NEIIE SN, Mt iy TR
PRSI BCR . BRSCHEAEMSI NS, AE ORISR AL A B4
E Ak RGO . WA SRS BTk S ANMIEER, EAESC
HDAIE 2477 30T DA AR SUR AN T AL ERLIA, AANCER CE
A R R AR B T ALRRLTEY , PR AN T R A A A W T3 5%
FIURTE R SARHTT RIFFEIE , FAAEARA I T« AN S A MIBEAS A R HvA

Ja AR AR 7

i Zijun \Z«,j Jingje, fong insy Lo
#ﬁil@i{/ﬁ%%g yovj Qu Huijie TOIAJ
H#: 2025 4F 7 H 29 H

LFBZBXE
FALiR SCIE AR E

AR N [) o R P B o [A SR 1) el WU IR 5298 SCH S BRI L T, Ao vF
TSR P AIE A -
ARZEALE R T
VA IS
s, PR AR 2 4R 3 47, PRIl e A AL
[, R AF ORE 10 4F), s PR e 18 AR BA 4 o
CIpUsRse, % 4F O 20 4F), ad PR 05 2 A BAN A3 o
(WTEA_ETHEN AT “V7)

\ 7 ijun Tingja forg - ool .
RSB J;Jﬂﬁ e e P
Hi: 2025 48 7 F 29 H H#f: 2025 45 8] 7 H

w OE

AT DocuSnap, —A> ALBKSNHYAS A SCRE BT, BTEMEDR 244 400 -4 7
REESRETE DA OB T BRI PR G087 SO A B o 5 5807 3C
RS R ECEARS LSO, ToVR SRR UG R . H Sh 4V RIS 2 5L PR
% - DocuSnap £ &AL . S FAF AR S, R I5Uh SO AT R 25
LA (RS

F YA R I RFAL SE R T , FA i 2 S A A S s AN s IR A B BE Ty . &
FRLHT AT LLM 75 SCRAR] 80 A8 0 SIS SO . SO BV SRS R 11
TR, VAR AR S SO HOAE) B SR S Thik . %A sh b AR 7 6
Android [} Jetpack Compose fEALAA AL, FRAEEDULAY - Fmi AN et iy e AL BT g
LR AU IE MO EE RE 5

i AT PR AT AT I, FRATTIR B T B SO A B AR R R Y oK
SRS, PR TIRATA BT R . ARG M T, B S T LA
I PRI . IR AR RE R BRI DI RE . A SR A EAL L P
MARHRIA TR RS2 AR T - SCREMRAT -39 FEIN 20 70, — ik UL X i i R .

DocuSnap il i K58 K THEHAE AR S AL SRS SCHERZS &, FETA
SCRFE T TG T EORUERE, S R AL T DRI TT R SR T B
RS B AT AL IR ZERE , [R]ISPORAE ™ 1) B AL AN A

Kewtltin: BB, AL SCHERAE, SCRfEIGIEE, e mkih s

ABSTRACT

We present DocuSnap, an Al-powered personal document assistant designed to address
the challenges of managing digital copies of personal documents in today’s hybrid physical-
digital ecosystem. Traditional document management solutions treat documents as static
images or unstructured text, failing to support real-world tasks like semantic retrieval, auto-
matic organization, and form filling. DocuSnap introduces a novel five-stage pipeline that
combines computer vision, optical character recognition (OCR), and large language models
(LLMs) to transform raw document captures into structured, actionable information.

The system architecture employs a privacy-first approach with end-to-end encryption and
on-device image processing capabilities. Key innovations include LLM-based semantic un-
derstanding for intelligent categorization and cross-document linking, keyword searching
support for intuitive document retrieval, and automated form filling using extracted data
from related documents. The mobile application, built using Android’s Jetpack Compose
framework, provides an intuitive user interface with advanced image processing capabilities
including perspective correction and contrast enhancement.

Through comprehensive customer interviews and usability testing, we identified critical
pain points in existing document management workflows and validated our design decisions.
The system was evaluated through extensive acceptance testing and demonstrated successful
implementation of core features including geometric correction, image enhancement, en-
crypted storage, and intelligent information extraction. Performance testing on emulator and
low-end hardware confirmed acceptable response times, with document parsing averaging
20 seconds and general Ul interactions being responsive.

DocuSnap represents a significant advancement in personal document management by
combining robust computer vision techniques with Al-driven semantic understanding, offer-
ing users a comprehensive solution that bridges the gap between physical document capture

and intelligent digital organization while maintaining strict privacy and security standards.

Key words: Mobile App, Al Document Understanding, Document Image Normalization,

End-to-end Document Security

II

Contents

ABS T RACT .., II
Chapter 1 Introduction ... 1
L1 Background ..o 1

1.2 Problem Statementuuuiiieiiiii e 1

1.3 Existing Solutions and Their Drawbacksccoooiiiiiiii .. 3

1.4 Proposed SOIULION.ooitiie ettt et 4
Chapter 2 Design Specification ... 6
2.1 Customer ReqUITEMENESuuuuettttiiie ettt et et e e eeaianns 6
2.1.1 User Interview QUESHONNAIIE. ..o vuttteere et eeeeneenreenrenreaneeneenneenn. 6

2.1.2 CusStomer INEIVIBWSt utet ettt et e e e e e e eneneneneenes 6

0 TR N 3111 20 o J 7

2.1.4 Customer Profile. ...ttt e 8

2.2 Competitor ANALYSISoeitiiiie ettt e 10
2.2.1 Manual Photo Organizationeueeeuuneeeuneeeeunneeeunneeennn. 10

222 CaAMSCANNET . ..\ttt ettt ee e et e et e e et e e et e et e e iee e e e 10

223 APPIE PhOLOS vttt ittt e e et e e 11

224 AdODE SCAN vttt ettt e e e 11

2.2.5 MICIOSOTE LENS ..ttt ittt e e e et et e e e e e e e eeeeeeaeeenns 12
Chapter 3 AppDesign..................... 14
3.1 Storymap and Featurescoouiiiiiiniiiiiie i 14
3.2 Acceptance Criteria for Featuresoiiiiiiii i 14
321 Stage 1 Featuresuutite ettt ie e ettt et e e eeeee e 14

322 Stage 2 FEatUIESuunet ettt e et e et e e et e 15

323 Stage 3 Featuresiue ittt ittt e 17

I

324 Stage 4 Featlilesottt ettt et e 19

3.3 ENgine ArchiteCture.oouuuiieittiiiiie ettt e e enns 20
33.1 Model and ENGiNevuiuneiieie ettt ie et e e ie e e eiee e 20

3.3.2 Dataand Control Flow Diagramccceuiiiiieiiieiineiineeinannnnnnn. 21

34 APT DSIEN ..ttt e 22
3.4.1 Modular Frontend ArchiteCtureveeuueeeuuieeeuneeeineeenneeennn. 22

3.42 Secure Backend SErVICESuuuunettteeetieeetiaeeeiieeeiaeeenneaennns 22

3.4.3 Supporting Infrastructurecoeueeiieeiieeiierieeiieeeeeenaaennaann. 22

3.4.4 Security ATCRItECIUTEtuuett ettt ettt e e e ie e e e eeeeiaeeaaaenn, 23

3.5 UNJUX DESIN ...ttt et et e 23
3.5.1 Overall U/UX Flow ArchiteCtureoveeuuieeeiunneeuuneeeunneeennn. 23

3.5.2 Home Page: Central Navigation Hubooiiiiiiiiiiiiinn.... 23

3.5.3 Search Stage: Al-Powered Document Discoverycccveiiiiinnan.... 25

3.5.4 Image Processing: One-Tap Document Enhancement.......................... 26

3.5.5 Document Handler: Intelligent Organization and Management................. 27

3.5.6 Encryption: Security-Aware Data StOrageooeueerneeunreuneenneennnenn. 31

3.6 Usability TeStINgoovvtittittt e 33
3.6.1 Summary of Findings in Usability Testceeuieiiiriinreinrennnennnnnn. 33

3.6.2 Change to Final UJ/UX DeSIN . .uevunerneereeeeeeeeaeeaeeiaeenneennaenn. 35
Chapter 4 App Development and Testing.. 37
4.1 Front-end Development. ... e 37
411 DeSign Patlernttt e et e e e et e e e e 37

4.1.2 Individual UT Screen DEeSIZN .. .evueerneiree e eineeee e e eaeeneenaeennn. 39

4.1.3 Navigation CONtrollerveuuuneetit ettt eennns 42

414 ViewModel and UI-Service INteZrationoeeeeeuuuunneeeeenunnnnnnnn. 43

4.1.5 Image Import and ProCessing.........oveetetuuineeeeeiiiiieeeeeeniiianeann. 44

4.1.6 Image Processing Logic and Algorithmscoooiiiiiiiiiiiii.n. 47

4.2 Back-end Developmentcoooiuiiiiiiiiiiiii 49
4.2.1 In-APP DAl@DASE . .ttt ettt ettt et e e e e e 49

422 Server Backendoiiiiiiiiii 51

4.3 Testing ReSUILS ...t 55

v

e T N LN 1 T 1) AP 55

e N O B 1 11T O 56

4.3.3 Acceptance Testing for FEaturesouieeiiiineeiiineeiiiieeninaeannnn. 56

4.4 Performance Testingoieeiiiiiiiiiie et i eens 74
Chapter S Conclusions ..., 76
TR N T T30 1073 76
5.2 Main CONCIUSIONS ...\ttt ettt e ettt e et et e e e et e e e e eeannns 76

5.3 OUOOK ..t 77
References. ... 79
Appendix 1 Customer Interview Questionnaire 81
Appendix 2 Affinity Map ... 82
Appendix 3 Swimlane Diagram.............................. 83
Appendix 4 APIDesignooiiii 84
Appendix 5 Usability Testing Script..........................l 93
Appendix 6 Testing Environment Screenshots 96
Research Projects and Publications during Undergraduate Period 98
Acknowledgements ... 99

AR SN =2 (VA9 Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background

In today’s digitized world, personal documents like passports, driver’s licenses, health-
care cards, academic records, and receipts are indispensable for navigating daily life. These
materials serve as proof of identity, enable access to services, and validate financial or legal
transactions. Yet, despite their critical role, individuals face persistent challenges in man-
aging digital copies of these documents—a problem rooted in the gap between the need for
organized, high-quality digital records and the tools available to create and manage them.

The problem begins with the duality of document formats. While institutions increasingly
adopt digital systems, many personal documents still originate in physical form. Individuals
are left to bridge this gap through makeshift solutions: snapping photos, scanning IDs, or
hoarding paper records. This hybrid ecosystem creates fragmentation. Physical documents
are prone to misplacement or damage, while digital copies are often disorganized—rendered
unusable due to poor image quality or hidden among vague filenames like “IMG_1234.jpg”.

Personal documents span a wide range of formats and use cases, such as passports with
biometric data, receipts with itemized purchases, and insurance cards with policy numbers.
Generic storage tools lack awareness of these distinctions, forcing users to adopt fragmented,
inefficient workflows.

Moreover, retrieving documents in real time remains a hurdle—especially in urgent situ-
ations like travel or medical visits—exacerbated by poor categorization, keyword-unfriendly
filenames, or lack of intuitive search. As institutions increasingly expect digital submissions,

the need for seamless capture, organization, and access becomes more pressing.

1.2 Problem Statement

Despite the growing digitization of services, individuals still struggle to manage the vast
array of personal documents—such as IDs, receipts, certificates, and health records—in a
way that is organized, secure, and immediately accessible. The problem is not merely one of

digitization, but of intelligent digital stewardship. Existing tools treat documents as static

AR SN =2 (VA9 Chapter 1 Introduction

images or unstructured text, failing to support real-world tasks like retrieving a tax form on
demand, tracking expiration dates, or organizing documents by purpose. As a result, users
are forced to adopt fragmented, error-prone workflows involving a mix of smartphone photos,
generic folders, cloud apps, and manual spreadsheets.

At its core, the problem is the lack of an integrated system that can: (1) robustly digitize
and clean up physical documents, (2) extract and structure critical data across a wide variety
of formats, (3) organize documents meaningfully without user input, (4) enable semantic,
natural-language-based retrieval, and (5) do all of the above in a secure, privacy-preserving
way on mobile devices.

To solve this problem, several research and engineering challenges must be addressed:

* Image Preprocessing: Document photos taken with mobile devices often include per-
spective distortions, glare, shadows, or physical imperfections (e.g., wrinkles). Ef-
fective preprocessing requires real-time, on-device algorithms capable of perspective
correction, edge detection, glare reduction, and contrast enhancement that work across
varied lighting and surface conditions.

* Robust and Structured OCR: Optical character recognition systems typically output
flat text, which is insufficient for documents with complex layouts (e.g., tables in re-
ceipts, labels in forms, or multi-column formats). Extracting semantically meaningful
key-value pairs requires layout-aware OCR and post-processing logic that can recover
the logical structure and relationships embedded in the document!!-%!.

* Semantic Understanding and Retrieval: Traditional systems rely on keyword-based
search and metadata matching, which fail when users query using vague or contextual
language (e.g., “my son’s insurance card” or “the tuition receipt from June”). Effective
retrieval must incorporate natural language understanding and be aware of document
types, fields, and temporal or relational cues.

* Privacy-Preserving Al: Because personal documents often contain sensitive or reg-
ulated information (e.g., IDs, medical records, financial data), all computation—in-
cluding OCR, semantic extraction, and indexing—must be performed locally without
uploading unencrypted files to cloud servers. This imposes constraints on model size,
memory usage, and runtime performance.

* Secure Indexing and Access Control: A usable system must encrypt documents

AR SN =2 (VA9 Chapter 1 Introduction

and metadata while still enabling fast lookup, expiration tracking, and contextual re-
minders. Designing encrypted yet queryable indices poses a trade-off between secu-

rity, performance, and usability.
Solving these challenges requires a novel, end-to-end approach that tightly integrates
mobile computer vision, layout-aware information extraction, lightweight language models,

and user-centric design principles under strict privacy constraints.

1.3 Existing Solutions and Their Drawbacks

Current approaches to personal document management fall into three general categories:
manual storage, scanner-centric apps, and passive photo organization. Each addresses frag-
ments of the broader challenge, but none offer a cohesive, intelligent solution that adapts to
the diversity and urgency of real-world document needs.

The most common strategy is manual photo organization, where users take pictures
of documents with their smartphones and manually sort them into folders or albums. This
method provides minimal automation and lacks essential capabilities like text extraction,
metadata tagging, or semantic search. As a result, users often face difficulty locating critical
documents when needed and must rely on memory or ad hoc labeling conventions, leading
to inefficiencies and errors.

Another class of tools focuses on scanner-centric workflows. These applications prior-
itize high-quality image capture, offering features such as auto-cropping, contrast enhance-
ment, and basic OCR. While effective for digitizing documents into clean, readable formats,
they stop short of understanding document semantics. OCR output is often raw and unstruc-
tured, requiring manual correction or post-processing. Moreover, these tools typically lack
intelligent organization capabilities, forcing users to sort documents into rigid folder systems
without automated tagging, contextual grouping, or deadline tracking. Additionally, many
such apps operate through cloud-based services, raising privacy concerns over the handling
of sensitive data®*.

A third category includes passive photo organization systems, such as those built into
smartphone operating systems. These tools use image classification and on-device OCR to
surface document-like images and allow keyword-based search. However, they treat doc-

uments as generic images, offering no structure extraction, customization, or document-

AR SN =2 (VA9 Chapter 1 Introduction

specific features. Their capabilities are often limited to superficial detection, lacking support
for field-level parsing (e.g., expiration dates or totals) and providing little control over how
documents are categorized or secured”!.

Additionally, some tools emphasize ecosystem-bound productivity integration, em-
bedding scanning functions into larger office suites. While these solutions streamline work-
flows for users deeply embedded in specific ecosystems, they lack portability, cross-platform
support, and general-purpose document intelligence. Features such as semantic search, smart
categorization, and cross-document relationships are largely absent, as these tools are de-
signed to augment productivity pipelines, not to manage diverse personal records compre-
hensively!®!.

Across all these categories, common limitations emerge. Most tools treat documents
as either images or raw text, failing to extract and organize structured information. Few
support natural language queries or intelligent reminders. Privacy and security are often
afterthoughts, with limited on-device processing or encryption options. Ultimately, while
these tools solve parts of the problem—scanning, OCR, or storage—they lack a unified, in-
telligent, privacy-conscious solution that empowers users to manage personal documents as

dynamic, searchable assets.

1.4 Proposed Solution

DocuSnap is a next-generation document management system that leverages large lan-
guage models (LLMs) to overcome the limitations of existing tools. Unlike traditional apps
that treat documents as static images or unstructured text, DocuSnap introduces true doc-
ument intelligence by combining semantic understanding with secure, user-controlled pro-
cessing.

At the core of DocuSnap is a five-stage pipeline designed to transform raw captures into
structured, actionable information!”). First, the system performs image enhancement, apply-
ing computer vision techniques such as perspective correction, lighting normalization, and
auto-cropping to clean up user-captured images in real time. Next, an efficient OCR extrac-
tion engine processes the enhanced images to extract raw text, serving as the input to the
subsequent stages.

The third stage—LLM structuring—is where DocuSnap sets itself apart. A large lan-

AR SN =2 (VA9 Chapter 1 Introduction

guage model, accessed via Zhipu Al’s secure backend API, parses the OCR output and orga-
nizes it into structured JSON objects tailored to the document type. For instance, a scanned
receipt might be transformed into:

{"document_type": "receipt", "total": "$49.99"}

This enables direct use in finance or tracking applications. In the semantic tagging stage,
documents are automatically labeled based on their content, context, and urgency!®!. Labels
such as “medical bill”, “passport”, or “2023 tax-related” are inferred without user input,
reducing organizational overhead.

To preserve user privacy, DocuSnap implements a robust encryption scheme: all docu-
ment content and associated metadata are encrypted locally on the user’s device before being
sent to the backend service. Only the corresponding user possesses the cryptographic key
necessary to decrypt the response, ensuring, at the same time, supports for asynchronous
result retrival and that plaintext is never stored on disk. This architecture provides both the
scalability and intelligence of backend LLM inference, and the privacy guarantees typically
associated with on-device Al.

Finally, DocuSnap supports retrieval through flexible queries. Users can search for doc-
uments using expressions like “insurance card” or “contract from”, bypassing the need to
remember file names or specific metadata®’.

DocuSnap introduces several key innovations that enable this functionality. The use of
LLM-based semantics allows the system to go beyond surface-level text recognition, un-
derstanding document structure and extracting meaning. By using a secure encryption and
access control scheme, DocuSnap ensures that user data remains confidential, even during
backend processing. The system also supports cross-document linking, intelligently asso-
ciating related documents such as a student ID and a visa form, or a receipt and its associated
warranty. Above all, DocuSnap is designed with a user-centric philosophy, offering an in-
tuitive interface that avoids feature bloat and empowers users with minimal technical effort.

In essence, DocuSnap reimagines document management as more than just digital stor-
age. Itis a dynamic, intelligent assistant that understands, organizes, and retrieves documents

in ways that align with how people actually use them in modern life.

AR SN =2 (VA9 Chapter 2 Design Specification

Chapter 2 Design Specification

2.1 Customer Requirements

Our intended users include students (undergraduate and graduate), university staff, and
early-career professionals, particularly those who regularly manage administrative, academic,
or legal documents. These users often navigate multiple document formats, such as PDFs,
images, and physical papers, and require reliable access to organized content, especially when

on the go or facing time constraints.

2.1.1 User Interview Questionnaire

To better understand our target customers, we developed a user interview questionnaire
centered around several key objectives. Firstly, we aimed to validate the core pain points
users experience with document management in their daily routines. Gaining insight into
these challenges is essential for designing solutions that effectively address user needs. Sec-
ondly, we wanted to identify existing workaround solutions that users may have adopted, as
well as their limitations. Understanding what does not work in the current landscape enables
us to pinpoint areas for improvement. Lastly, we sought to uncover unmet needs and generate
ideas for innovative features that would enhance the overall user experience.

In crafting the questionnaire, we adhered to specific design principles to maximize its
effectiveness. We prioritized open-ended, experience-driven questions to elicit qualitative
insights that delve deeper into user behavior. Additionally, we structured the questions to
flow logically, beginning with broader background inquiries and narrowing down to specific
pain points. We also included prompts for real-life examples to encourage respondents to
share concrete user behaviors and edge cases, enriching our data with practical insights. A

detailed breakdown of the questions can be found in Appendix 1.
2.1.2 Customer Interviews

2.1.2.1 Interviewees

Our interview participants represented a diverse demographic and occupational spec-

trum, with seven students, three industry professionals, and varying levels of experience.

AR SN =2 (VA9 Chapter 2 Design Specification

The students included undergraduates, master’s, and PhD candidates from institutions such
as the University of Michigan, UTUC, the University of Washington, and the UM-SJTU Joint
Institute. They commonly manage documents related to academics, visas, applications, and
reimbursements. The industry professionals included engineers from companies such as
Meta and Alibaba, as well as a working professional managing both personal and profes-
sional documents, including tax forms and reports. This broad representation enabled us to
capture a range of insights, particularly since many participants were currently engaged in

internships or cross-border academic programs that require extensive document handling.
2.1.2.2 Interview Logistics

Interviews were conducted either remotely via Zoom or in person, lasting approximately
30 to 45 minutes each. Three members of our team were involved in scheduling, performing,
and extracting insights from the interviews. We followed a structured approach covering var-
ious topics, including document search behavior, preferences for scanning tools, frustrations
with OCR, transitions from physical to digital documents, and desires for an ideal document
management assistant.

The venues for our interviews varied significantly, taking place in university settings such
as dorm rooms, labs, and libraries for students, as well as in home offices or corporate en-
vironments for professionals. Many participants had recently undergone document-heavy
processes, such as graduate school applications or internship onboarding, which provided
rich context and recall of fundamental challenges faced during these times.

The insights gleaned from these interviews were invaluable, revealing how individuals
manage both digital and physical documents, their expectations for existing tools, and the
potential value of intelligent assistance. This qualitative data directly informed our feature

ideation and problem framing for DocuSnap.

2.1.3 Affinity Map

Our interview findings are summarized on our Miro board, and a complete visualization
of the affinity map appears in Appendix 2.

From our qualitative interviews, two primary themes emerged—Organization & Access
Systems (10 votes) and Scanning Tool Requirements (10 votes). Participants consistently

reported frustration with fragmented file storage across multiple devices and platforms, often

https://miro.com/app/board/uXjVIuSJGKE=/?share_link_id=225007777422

AR SN =2 (VA9 Chapter 2 Design Specification

struggling to locate documents efficiently. In particular, many criticized Windows’ search

capabilities and expressed a desire for seamless, cross-device syncing (akin to iCloud) and

search functionality comparable to macOS Finder. Common organizational strategies

such as event-based folders frequently led to duplicate files and user confusion. Equally
critical were shortcomings in scanning tools. Users described mobile camera scans as blurry,
OCR accuracy as unreliable, and software interfaces as obstructed by region restrictions or
intrusive advertisements. These issues significantly impede the trustworthy digitization of
physical documents.

A closely related theme, Tool Efficiency & Simplicity (9 votes), highlighted users’ pref-
erence for one-click operations and automated workflows—such as automatic syncing of new
scans—to minimize manual tasks like retyping. This dovetails with Document Discovery
Challenges (8 votes), where locating existing files was identified as the most time-consuming
activity. In the absence of a systematic organization, users resorted to memory or ad hoc
searches across disparate apps. Suggestions for improvement included automated tagging
and Al-driven retrieval systems.

A third area of concern, File Export & Flexibility (6 votes), revealed pain points in
post-scan processing: merging multi-page PDFs was described as tedious, and even minor
edits to a compiled document often necessitated restarting the entire workflow. Complex
formats, such as bank statements, further strain OCR capabilities. As one participant noted,
“Modifying one page in a compiled PDF means redoing everything”, underscoring the need
for modular editing and more robust text-recognition algorithms.

Notably, Security & Transparency (2 votes) and Hardware Integration (2 votes) re-
ceived comparatively little attention. This may indicate that users assume security features
are a given or prioritize convenience over safeguards—a potentially risky oversight for sen-
sitive records, such as visas or financial statements. The minimal focus on hardware suggests

that existing solutions are either sufficient or that users have accepted current limitations.

2.1.4 Customer Profile

Our interviews highlight several core needs of our target customers. First, users demand
effortless organization: a single, reliable system that offers instant categorization and unified

search, so they never have to remember where a file is stored or sift through irrelevant results.

AR SN =2 (VA9 Chapter 2 Design Specification

This unification must encompass both physical and digital documents, ensuring that visas,
academic records, receipts, and other critical files are always accessible.

High-quality, ad-free scanning is equally essential. Participants insist on crisp, water-
mark-free captures and batch processing with built-in deblurring. They need layout-aware
OCR that accurately handles printed and handwritten text (eliminating mix-ups like “0” vs.
“0”), plus automated data extraction to auto-fill standardized forms from trusted databases,
thereby removing time-consuming copy-and-paste work and reducing errors.

Once documents are in the system, users require flexible post-scan editing. They want to
merge, reorder, or modify individual pages without having to restart the entire PDF workflow.
Modular exports—potentially in formats beyond static PDFs—should support quick updates
and annotations for complex, multi-page documents such as bank statements.

Security must be robust yet invisible. Although explicit security votes were few, the
underlying fear of cloud leaks drives many to store sensitive files locally. Users will embrace
end-to-end encryption and granular access controls if these safeguards operate transparently,
without requiring extra steps or performance trade-offs.

Finally, users envision proactive assistance via Al: automated tagging, semantic search
by content and context, and a lightweight assistant that summarizes documents and suggests
next steps. By shifting from reactive file hunting to proactive workflow guidance, the system

can transform document management into a trusted, efficient experience.

Design Implications To satisfy these needs, our product, DocuSnap, must

1. Deliver clean, batch-capable scanning with layout-aware, error-resistant OCR and au-
tomated form-filling.

2. Unify repositories and automate organization with seamless syncing, global search,
and Al-powered tagging.

3. Enable modular, page-level editing of exports, beyond static PDFs, for quick, incre-
mental updates.

4. Embed transparent security through default encryption and fine-grained access con-
trols, including an optional local-first mode.

5. Provide contextual intelligence with semantic search, auto-fill from verified data sources,

and an Al assistant for summarization and task suggestions.

AR SN =2 (VA9 Chapter 2 Design Specification

2.2 Competitor Analysis
2.2.1 Manual Photo Organization

Manual photo organization, relying on default smartphone galleries or generic storage,
involves users manually capturing, naming, and sorting document photos into self-defined
folders, often with inconsistent labels such as “IDs” or timestamped filenames. This approach
lacks built-in tools for image enhancement, forcing users to crop and edit images manually,
and offers no keyword search, requiring them to scroll through unstructured files. Critical
data isn’t extracted automatically, sensitive info risks exposure in unencrypted storage, and
workflows fragment across devices, making it inefficient, error-prone, and unsuitable for

managing growing document volumes.

2.2.2 CamScanner

CamScanner positions itself as a dedicated document-scanning tool, offering features like
edge detection, perspective correction, and OCR to convert photos of physical documents
into polished PDFs®!. The app enhances scan quality through auto-cropping and filters that
adjust contrast or remove shadows, making it popular among users who need reliable dig-
ital copies for professional or academic submissions. Its cloud storage integration allows
cross-device access, and the OCR feature enables basic text searches within scanned files.
However, CamScanner’s technical limitations become apparent in complex use cases. The
OCR engine struggles with accuracy when processing documents with multi-column layouts,
handwritten text, or low-resolution images, often misreading critical details like dates or num-

10-111 " This unreliability forces users to verify extracted data, undermining the promise

bers!
of automation. Additionally, while CamScanner supports basic organization through fold-
ers, it lacks intelligent categorization—users cannot automatically sort invoices by ID or link
related documents, such as passports and visas. Non-technical drawbacks further hinder its
appeal. Intrusive ads and watermarks mar the free version, while advanced features like high-
resolution OCR and bulk processing require a subscription, alienating cost-sensitive users.
Privacy concerns also linger due to past security breaches, including a 2019 incident where
malware was discovered in the app, eroding trust in its data-handling practices!'?. These

factors relegate CamScanner to a narrow role as a scanner rather than a holistic document

management solution.

10

AR SN =2 (VA9 Chapter 2 Design Specification

2.2.3 Apple Photos

Apple Photos leverages its native integration with iOS devices to offer a passive approach
to document management®!. Using Al-driven image recognition, the app automatically de-
tects documents like receipts or IDs in users’ camera rolls and groups them into broad cat-
egories such as “Scans” or “Notes”. With the introduction of Live Text in iOS 15, Apple
Photos added OCR capabilities, allowing users to search for text within images—for exam-
ple, typing “passport number” to locate a scanned ID. While this feature simplifies retrieval
compared to manual scrolling, Apple Photos remains a photo-first app, treating documents as
incidental. Technically, its OCR is shallow; it recognizes text but cannot extract structured
data (e.g., pulling expiration dates from a driver’s license) or generate actionable insights.
The app also lacks document-specific editing tools, leaving users to rely on third-party apps
for basic enhancements like glare removal or perspective correction. Organizationally, Ap-
ple Photos provides no way to tag documents with custom metadata or create nested folders,
forcing users to depend on its rigid, algorithm-driven categorization. Non-technical limita-
tions include platform exclusivity, as the app is unavailable to Android users, and privacy
concerns tied to 1Cloud storage. Sensitive documents stored in Apple Photos are vulnerable
if a user’s iCloud account is compromised, and the app offers no encryption or password pro-
tection for individual files. Ultimately, Apple Photos serves as a convenient but superficial
tool for users already embedded in the Apple ecosystem, failing to address the nuanced needs

of dedicated document management.

2.2.4 Adobe Scan

Adobe Scan, part of Adobe’s Document Cloud suite, targets professionals with its high-
fidelity scanning and deep integration with PDF workflows!*!. The app excels in producing
clean, print-ready scans through advanced image cleanup tools, such as automatic shadow
removal and color adjustment, making it a favorite for archiving contracts or academic pa-
pers. Its OCR engine is among the most accurate, capable of extracting text from complex
layouts and exporting it to editable formats like Word or Excel. However, Adobe Scan’s tech-
nical sophistication comes at a cost. The app is resource-intensive, draining device batteries
and requiring significant processing power, which limits its usability on older smartphones

or tablets. Its feature set, tailored for power users, overwhelms casual users seeking sim-

11

AR SN =2 (VA9 Chapter 2 Design Specification

ple scans, as the interface buries essential tools behind layers of menus. Organizationally,
Adobe Scan relies on manual folder systems within Adobe Document Cloud, offering no
Al-driven tagging or smart categorization. Non-technical barriers include its pricing model:
critical features like cloud storage beyond basic limits and advanced OCR require a Cre-
ative Cloud subscription, which is prohibitively expensive for individuals outside corporate
environments. Furthermore, Adobe Scan operates in isolation from non-Adobe ecosystems;
scans cannot be seamlessly searched or edited outside Adobe’s tools, creating workflow silos.
While Adobe Scan is unmatched in scan quality, its complexity, cost, and lack of intuitive

organization render it impractical for everyday users.

2.2.5 Microsoft Lens

Microsoft Lens (formerly Office Lens) emphasizes integration with Microsoft 365 work-
flows, positioning itself as a bridge between physical documents and productivity tools like
OneNote, Word, and OneDrivel®. The app optimizes scans for readability, offering modes
tailored to whiteboards, documents, or handwritten notes, and automatically straightens or
enhances images for improved clarity. Its OCR capabilities embed extracted text into PDFs,
enabling users to copy and paste content into Office apps. For Microsoft-centric users, this
creates a seamless experience, such as scanning a receipt and directly importing it into an
Excel expense report. However, Microsoft Lens suffers from technical limitations that re-
strict its utility as a standalone document manager. While OCR text is embedded in scans,
the app does not index this data for cross-document searches, meaning users cannot search
for “insurance policy number across all stored files. The lack of tagging or folder systems
beyond OneDrive’s basic organization forces users to rely on external tools for categorization
and organization. Non-technically, Microsoft Lens’s value is heavily contingent on the adop-
tion of Microsoft’s ecosystem. Users outside the Office 365 suite gain little from its features,
and the app offers no incentives for those preferring Google Workspace or other platforms.
Even for Microsoft users, the app’s focus on scanning-to-Office workflows neglects broader
document management needs, such as secure storage or form-field automation. While its
free, ad-free model is appealing, Microsoft Lens remains a niche tool for Office power users

rather than a comprehensive solution.

12

ARl AT Chapter 2 Design Specification

Comparison of Competitors CamScanner, Apple Photos, Adobe Scan, and Microsoft
Lens each address fragments of the document management challenge but fall short of a uni-
fied solution. CamScanner prioritizes scan quality but lacks intelligent organization; Apple
Photos offers passive convenience but no document-specific tools; Adobe Scan caters to pro-
fessionals at the expense of accessibility; and Microsoft Lens ties utility to ecosystem loyalty.
Common gaps include the inability to auto-categorize diverse document types, extract and
structure data for form-filling, and strike a balance between advanced features and affordabil-
ity. These shortcomings underscore the need for a platform that integrates robust scanning,
Al-driven organization, and cross-functional automation—all while maintaining accessibil-

ity for everyday users.

Table 2-1 Comparison of Key Features of Competitors and our Product

Manual Apple Cam Adobe Microsoft DocuSnap
Feature

Org Photos Scanner Scan Lens (Ours)
OCR Accuracy None Low Medium High Medium High
Document Enhancement ~ None None High High Medium High
Cross-Platform Search No Limited Yes No No Yes
Form-Field Auto-Filling No No No No No Yes
Cost Free Free Premium Premium Free Free
Privacy Low Medium Low High Medium High

13

Chapter 3 App Design

3.1 Storymap and Features

experience phase and development stage.

User Experience

Chapter 3 App Design

Our storymap is illustrated below (Illustration 3—1). The features are grouped by user

Effortless Capture That
Just Works

Semantic Parsing & Auto
Classification

Manual Crop &
Straighten

Key-value extraction (15+
common doc types)

Grayscale Conversion

Handwriting recognition
(print & cursive)

Intelligent Retrieval with
Al-Assisted Workflow

Copy/paste extracted text

Basic date/type filters

Auto-form filling (100+
common forms)

Trust our Security-
Aware Data Storage

Encrypted server database

Basic PIN protection

Manual 4-Point
Perspective Correction

Basic categorization (e.g.,
"Receipt", "Contract")

High-Contrast Black &

@

Frequently used info

Semantic understanding

documents (e.g., matching PO to

I

End-to-end document
encryption

Auto-redaction of

White Filter R Natural language queries (50+ sensitive fields

intent types)

Automatic Edge Detection Multi-document summarization Al-assisted document GB/T 45574—2025

(with manual override) (e.g., trip expense reports) preparation guideline for complia.nce

plex workflow

Basic Shadow & Glare Custom schema support i i Self-hosted backend

Reduction for business users Proactive reminders option
Stage Skeletal MVP Stretch

Hlustration 3-1 Story Map

3.2 Acceptance Criteria for Features

3.2.1 Stage 1 Features

3.2.1.1

Manual Crop & Straighten

This section outlines the specific acceptance criteria for each feature.

WHEN A user engages the “Crop & Straighten” tool for a document.

THEN The system provides an interactive interface for precise manual boundary adjust-
ments and rotation, displaying the updated document instantly with sub-second re-
sponse times, and ensuring all subsequent document functionalities apply to the newly

processed version.

14

IGATE A S Chapter 3 App Design

3.2.1.2 Grayscale Conversion

WHEN A document is captured via the app’s scanner.
THEN The image is automatically converted to grayscale to create a cleaner visual appear-
ance, improve text clarity for OCR processing, preserve all critical document details

without data loss, and save the processed version in the user’s document library.
3.2.1.3 Manual 4-Point Perspective Correction

WHEN A user provides four non-collinear corner points defining a document in an image.
THEN The system generates a geometrically corrected rectangular output where edges ap-
pear straight, text aligns horizontally, all critical content remains uncropped, and the

perspective distortion is fully resolved without requiring additional user input.
3.2.1.4 High-Contrast Black & White Filter

WHEN A user applies the filter to a color or grayscale document image.

THEN The system outputs a pure black-and-white version where text/features retain full leg-
ibility, background artifacts are removed, contrast is maximized between foreground
and background elements, and the output resolution matches the original without loss

of critical detail.
3.2.1.5 Automatic Edge Detection (with manual override)

WHEN The system auto-detects document edges in an image.
THEN It outputs a perspective-corrected document or allows one-click manual corner over-

ride with identical output quality.
3.2.1.6 Basic Shadow & Glare Reduction

WHEN Applied to an image.
THEN Shadows/glare are reduced without degrading text legibility or resolution, while pre-

serving original document proportions and critical details.

3.2.2 Stage 2 Features
3.2.2.1 Key-value extraction (15+ common doc types)

WHEN A user uploads a document from one of the 15+ supported common document types.

15

IGATE A S Chapter 3 App Design

THEN The system automatically extracts key-value pairs, displaying them instantly with
high accuracy and sub-second response times, and presenting them in an easily re-

viewable and editable format.
3.2.2.2 Handwriting recognition (print & cursive)

WHEN A user uploads a document containing handwritten text (both print and cursive).
THEN The system accurately transcribes the handwriting into editable digital text, display-
ing the recognized content instantly and enabling seamless search and selection func-

tionality within the transcribed areas.
3.2.2.3 Basic categorization (e.g., “Receipt”, “Contract”)

WHEN A user uploads or scans a document.

THEN The system shall automatically assign a high-level category (e.g., “Receipt”, “Con-
tract”, “Invoice”) based on document layout, content features, and OCR text.

AND The categorization shall be completed within 2 seconds for documents under 10 pages.

AND The confidence score for top prediction must exceed 85% for the result to be applied

without fallback to user correction.
3.2.2.4 Cross-document linking/related documents

WHEN Two or more documents are uploaded that contain semantically or structurally re-
lated identifiers (e.g., matching Purchase Order numbers, vendor names, or invoice
references).

THEN The system shall surface linkages between them automatically in the UL

AND Group or recommend the documents for joint review or action.

AND Allow the user to inspect or override the linkage with a justification pane.
3.2.2.5 Multi-document summarization (e.g., trip expense reports)

WHEN A user selects multiple related documents (e.g., receipts from a business trip).

THEN The system shall generate a natural language summary or structured table capturing
key fields (e.g., date, amount, vendor) across documents.

AND The output must be editable by the user before export.

AND Any OCR errors or missing fields shall be highlighted for manual verification.

16

IGATE A S Chapter 3 App Design

3.2.2.6 Custom schema support for business users

WHEN An admin user defines a custom schema (e.g., a new document type with specific
fields like “Project Code” or “Client ID”).

THEN The system shall support parsing and storing documents against this schema.

AND Provide form-based field mapping UI to guide training for each custom field.

AND Auto-populated values must be validated against schema rules (e.g., regex format,

mandatory fields) before saving.

3.2.3 Stage 3 Features
3.2.3.1 Copy/paste extracted text

WHEN A user selects extracted text (e.g., an invoice number, contract clause, or receipt
total) from a parsed document in DocuSnap.

THEN The system highlights the selected text and enables standard OS copy/paste func-
tionality (Ctrl+C/Ctrl+V or long-press menus on mobile). The copied text retains its
original formatting (e.g., numbers, dates, or key-value pairs like “Total: $50.00”") with-
out corruption. The pasted content matches the extracted text exactly (no truncation or
added metadata). On mobile, the paste action works seamlessly in external apps (e.g.,

Notes, email, or forms).
3.2.3.2 Basic date/type filters

WHEN A user applies a single filter, such as by document type (e.g., type="“Receipt”) or by
date (e.g., date=*“March 2024”).

THEN The system displays only documents matching the applied criterion, provides a clear
visual indicator of the active filter, and shows a user-friendly empty state message when
no matches exist, while maintaining full scroll and selection functionality in the filtered

results.
3.2.3.3 Auto-form filling

WHEN A user taps auto-filling buttons in detail page of any of the 100+ supported common
forms (tax forms, insurance claims, employment applications, loan applications, etc.).

THEN The system automatically populates applicable fields by extracting verified informa-

17

IGATE A S Chapter 3 App Design

tion from the user’s existing document database, displays auto-filled fields with visual
indicators to distinguish them from manual entries, allows users to review and modify

suggested values, and completes the entire auto-fill process.
3.2.3.4 Frequently used info

WHEN The user navigates to their statistics summary.
THEN The system must display the name of the input field they have completed most fre-

quently across all sessions.
3.2.3.5 Semantic understanding

WHEN A user uploads related documents or performs document searches.

THEN The system automatically identifies and establishes contextual relationships between
documents (e.g., linking visas with corresponding flight itineraries and hotel reserva-
tions), groups multi-page documents as single entities, understands document hierar-
chies and dependencies, creates intelligent folder structures based on semantic content
rather than just file names, and enables cross-document reference searches that sur-
face related information across the entire document collection with 90% accuracy in

relationship detection.
3.2.3.6 Natural language queries (50+ intent types)

WHEN A user enters a natural language query such as “Q2 client expenses over $75”, “show
me my passport from last year”, or “find contracts expiring this month” in the search
bar.

THEN The system accurately interprets the user’s intent from 50+ supported query types
(temporal filters, monetary ranges, document types, status queries, relationship searches),
cross-references structured metadata from processed documents to identify matching
results, returns relevant documents and specific sections within 3 seconds, and displays
results with contextual highlighting showing why each document matched the query

parameters.
3.2.3.7 Al-assisted document preparation guideline for complex workflow

WHEN The user triggers the “Auto Fill” feature.
THEN The system identifies related files and proposes related fills needed.

18

IGATE A S Chapter 3 App Design

3.2.3.8 Proactive reminders

WHEN The system detects an item’s “Expiration Date” is, for example, 7 days away.
THEN A reminder notification is automatically sent to the item’s owner. The notification

clearly states the item will expire in 7 days and provides a direct link to it.

3.2.4 Stage 4 Features
3.2.4.1 Encrypted local metadata search

WHEN A user performs a search within DocuSnap.
THEN The app retrieves relevant document metadata results using only locally stored, en-

crypted indexes, ensuring no metadata is transmitted or exposed to the cloud.
3.2.4.2 Basic PIN protection

WHEN A user attempts to open it.
THEN The document’s content is hidden, and the system prompts the user for a PIN. When
the user provides the correct PIN, the document’s content becomes fully visible and

accessible.
3.2.4.3 End-to-end document encryption

WHEN The user uploads a document or a form.
THEN The document’s content is encrypted on the client-side before being sent over the

network. The data stored in the database for that document is in its encrypted format.
3.2.4.4 Auto-redaction of sensitive fields

WHEN A user submits data containing common PII patterns (e.g., Social Security Numbers,
credit card numbers, phone numbers).

THEN The system automatically replaces the matched text with a redaction mask (e.g., ***-
**_1234) before it is saved.

3.2.45 GB/T 45574—2025 compliance

WHEN A user or process accesses data governed by the standard.
THEN The system must generate an immutable audit log entry detailing the user ID, times-

tamp, and the action performed.

19

Chapter 3 App Design

3.2.4.6 Self-hosted backend option

WHEN A user provides a valid URL and credentials for their backend server.

THEN All subsequent data processing must be exclusively directed to that server.

3.3 Engine Architecture

3.3.1 Model and Engine

Table 3—1 outlines the primary engine components, detailing their respective functional-

ities and implementations. Device components (1-5) use Android OS capabilities, backend

services (6-9) run on our infrastructure, and Zhipu LLM (10) is an external dependency.

Table 3-1 Engine Components and Implementation Details

Component

Functionality

Implementation

User Frontend

Camera/Gallery

Geo/Color Proces-

Sor

Document/Form
Handler

Frontend DB
Backend Server
Backend Worker
Cache Server
OCR Server

Zhipu LLM (Exter-

nal Service)

Ul rendering and interaction.

Image capture/selection.

Image correction/enhancement.

Workflow coordination.

Local data persistence.
API routing.

Async processing.
Temporary data storage.
Text extraction.

Data enrichment.

Android Studio (API 33); Build from

scratch.

Android Studio (API 33) and Gallery
APIs.

Android Studio (API 33); Build from

scratch.

Android Studio (API 33); Build from

scratch.

SQLite via Android Room.

Flask + Gunicorn.

Python threading.

Flask + Gunicorn + SQL.ite.

Flask + Gunicorn + CnOcr library.

External API integration.

20

IGATE A S Chapter 3 App Design

3.3.2 Data and Control Flow Diagram

We present the entity relationship in our app through two block diagrams shown below.
Specifically, [llustration 3-2 illustrates the data processing flow on the frontend, while Illus-

tration 3—-3 describes the backend service architecture of the system.

7 D T
Encrypted documents/SHA256

Document Key
Geometric correction + handler *™——_ T
color enhancing FormanedJSON\
Encrypted document sisHAZSE™
Key
— i
@ 2 Backend server
/ Formatted JSON™
PE—
[0}
handler

Cameralgallery Documentinfo

Fn
Adud uuuuuuuuu \zuevyﬂeus values /

«———Document db content———

< queyesitimo——> P

Frontend Database

Ilustration 3-2 Block Diagram 1

e N

User's phone/remote server

(configurable)

I

I

| P
I
P
| g
| ——
I

I

I

I

Cache Server (ask+sdiite)

Readlwrite cache (encrypted, without key)

— | -
_ Enorypred ﬂocumems/SHAZSS
meySHAQSB — F::;ZSZ soN T >
<«—Formatted JSON 4 i
LJ
User Backend Server (rask LLM API Provider
1. Check the cache. (Zhipu)

2. On cache miss, call OCR server and then LLM.

Content ¢
1 OCR results

-
OCR Server

(cnocr for remote server, lib for phone TBD)

Ilustration 3-3 Block Diagram 2

21

IGATE A S Chapter 3 App Design

3.4 API Design

The system architecture implements a contract-first interface design with formally spec-
ified input-output behaviors. Frontend modules expose typed function signatures for docu-
ment processing workflows, while backend services provide RESTful endpoints with crypto-
graphic payload handling. Complete interface specifications appear in Appendix 4, defining

method signatures and functional behaviors without implementation details.

3.4.1 Modular Frontend Architecture

Client-side processing follows a pipeline architecture beginning with image acquisition
through captureImage (source) which abstracts device-specific media access. Subse-
quent transformations apply geometric correction via correctGeometry (image) and
color optimization through enhanceColors (image). Document processing diverges at
the processDocument () and processForm () handlers that output encrypted content
with cryptographic hashes. Local state management is handled through database operations

like saveDocument () and getFormData () as formally specified in Appendix 4.1.

3.4.2 Secure Backend Services

The backend implements a unified processing endpoint /api/process accepting cryp-
tographically verified payloads. Requests require SHA-256 integrity hashes and dual-layer
encryption (AES-256 content with RSA-wrapped keys). As documented in the Appendix
4.2, the endpoint handles three processing types through polymorphic responses: document
metadata extraction, form structure parsing, and field-value mapping for pre-filled forms.
The system employs HTTP status codes (200, 202, 400, 500) to represent processing states,

with response schemas conforming to formally defined JSON structures.

3.4.3 Supporting Infrastructure

A dedicated cache server provides content-addressable storage through /api/cache/store
and retrieval via /api/cache/query endpoints using composite keys (client ID, content
hash, processing type). The OCR subsystem exposes a single /extract endpoint for text
recognition. Third-party integration utilizes Zhipu AI’s language models through their pub-
lished SDKs. All interface contracts are enumerated in Appendix 4.3 and 4.4.

22

IGATE A S Chapter 3 App Design

3.4.4 Security Architecture

The API design enforces cryptographic chaining throughout the processing lifecycle.
Frontend modules generate SHA-256 hashes and RSA-encrypted outputs as per their signa-
tures. Backend services validate payload integrity before processing and maintain encryption-
at-rest for cached results. The security model requires client authentication via UUIDs and
processes sensitive operations exclusively through encrypted channels following the proto-

cols defined in the Appendix and 4.2.

3.5 UI/UX Design
3.5.1 Overall UI/UX Flow Architecture

The DocuSnap UI/UX flow is architected around four core stages that mirror the user’s
natural document management journey: Capture, Process, Organize, and Retrieve (Illustra-
tion 3—4). This flow design prioritizes seamless transitions between stages while maintaining
user context and minimizing cognitive load. Each stage builds upon the previous one, cre-
ating a compound value experience where users progressively unlock more sophisticated

document management capabilities.

3.5.2 Home Page: Central Navigation Hub

The home page (Illustration 3-5) serves as the primary entry point and navigation hub,
designed with a clean, intuitive interface that immediately communicates DocuSnap’s core
value propositions. The layout follows a card-based design system that allows users to quickly

understand available actions without overwhelming them with options.

User Flow Details

Upon opening the app, users encounter a carefully structured home screen layout optimized
for both accessibility and functionality:

Top Section - Universal Search Bar: At the very top of the screen, a prominent search bar
enables users to perform natural language queries across their entire document library. This
persistent search functionality ensures users can quickly access any document from the home

screen without navigating through multiple menus.

23

IGATE A S Chapter 3 App Design

Search for Capture by Import from Image Processing

info / Doc / Form camera local gallery

Form Details: Parse / Form Document Document Details:
Auto Fill / Copy ... Lbrary Library Parse / Edit /Copy ...

INustration 3—4 Overall UI/UX Flow Architecture

Main Content Area - Upload Entry Points: The central portion of the screen features two
primary upload mechanisms:

1. Document Upload Card: A large, visually prominent card with camera and gallery
icons, allowing users to capture new documents or import existing images from their
device gallery

2. Form Upload Card: A secondary card specifically designed for form processing, with
distinct visual styling to differentiate it from standard document capture

Mid-Section - Frequently Used Information: Below the upload cards, the interface dis-
plays a dynamic “Frequently Used” section that shows:
* Quick access to commonly referenced information (e.g., ID numbers, insurance de-
tails)
* Smart suggestions based on user patterns and upcoming deadlines
Bottom Navigation - Global Library Access: A persistent bottom navigation bar provides
one-tap access to the app’s core organizational features:
* Documents Library Tab: Direct access to all processed documents with filtering and
sorting capabilities

* Forms Library Tab: Dedicated section for forms and form templates

24

IGATE A S Chapter 3 App Design

* Settings/Profile Tab: Account management and app configuration options
This layout ensures that the most frequently used functions (search and capture) are imme-

diately accessible, while providing clear pathways to organized content through the bottom

navigation.
DocuSnap
Your Al-powered Personal Document Assistant
‘ Search for
| Q, Ssearch... Q .
Capture by camera y |. info / Doc / Form
Upload Document
B Camera |§ Gallery
Upload Form
m Camera |§ Gallery
Import from
| Frequently Used Text Info]OCH] 8allery
Scroll down to see Recent Expenses
frequently used info ~ [f e
Lo
Form Library Document Library

Ilustration 3-5 UI/UX Layout

3.5.3 Search Stage: AI-Powered Document Discovery
3.5.3.1 Natural Language Query Interface

The search stage revolutionizes document retrieval by accepting natural language queries
rather than requiring exact filename matches. Users can type conversational queries like
”show me tax documents from last year” or ”find medical bills over $100” and receive con-

textually relevant results.

25

IGATE A S Chapter 3 App Design

3.5.3.2 Search Results Architecture

The search results (Illustration 3—6) are presented in a three-tier information hierarchy:
1. Primary Results: Documents that exactly match the search criteria are displayed with
thumbnail previews and key extracted information
2. Related Documents: The Al identifies semantically related documents that might be
relevant to the user’s query
3. Extracted Information: Specific text snippets or data points from documents that

contain the queried information
3.5.3.3 Interactive Result Elements

Each search result includes:
* Document Preview: A clean thumbnail image of the document
* Key Metadata: Extracted information like document type, date, and relevant amounts
* Quick Actions: One-tap options to copy key-value pairs, see full document or view

related document

3.5.4 Image Processing: One-Tap Document Enhancement

The image processing stage (Illustration 3—7) supports both gallery import and real-time
camera capture, recognizing that users need flexibility in how they digitize documents. The
interface adapts based on the input method while maintaining consistent processing capabil-
ities.
3.5.4.1 One-Tap Auto-Processing

Following the “one-tap auto-processing” principle from our story map, the system automat-
ically applies multiple enhancement techniques:
1. Edge Detection: Automatically identifies document boundaries even in cluttered en-
vironments
2. Perspective Correction: Straightens angled photos using advanced geometric trans-
formation
3. Lighting Optimization: Removes shadows and glare while enhancing text clarity

4. Noise Reduction: Cleans up grain and artifacts from low-light photography

26

Chapter 3 App Design

< Expense Report Form

& Search Results
Link to source document

[Q tax form| X] a

9 results found
A company expense report form for tracking business

Lunch Receipt - Starbucks ¢

Starbucks receipt
o
Copy textual info

$12.50 on 2024-01-15

expenses and reimbursements.

|’ Business]/ Expense \H Form \\
® ¥ r = x 0O O

Extracted Information

Tab to see
Form Type Expense Report

B Lunch Receipt - Starbucks

—_—— —
| Foou LExpense 20240115
U)

Office supplies invoice Office Supply Invoice &>
$1,245.50 due 2024-02-10 [a]
document / form
.
d eta]] S Company TechCorp Inc.
Department Engineering

2024

= Expense Report Form
2024-01-15

Fiscal Year
Documents

E| 6 fields

Employee Name: John Doe

Documents

INustration 3—6 Interactive Result

3.5.4.2 Manual Editing Interface
For users who want fine-tuned control, the interface provides intuitive manual editing tools:

* Crop Handles: Visual markers that allow precise boundary adjustment

* Rotation Controls: Smooth rotation with snap-to-angle functionality
* Filter Options: One-tap filters included adjustable color enhancement, high contrast

and black white threshold filter.
* Undo/Redo: Full history tracking for confident experimentation.

3.5.5 Document Handler: Intelligent Organization and Management

The Document Handler stage transforms raw images into structured, actionable records

and provides a highly intuitive interface for managing them. Users can access the document

27

IGATE A S Chapter 3 App Design

Capture by camera

s 6

€ Image Processing m

186G

& Image Processing

Image
Processing
o

o—'

Import from
local gallery

Illustration 3—7 Manual Editing Interface

28

IGATE A S Chapter 3 App Design

gallery directly through the persistent ‘“Documents” tab in the global navigation bar. Each

item is represented by a preview card showing a document thumbnail, title, and date.
3.5.5.1 Document Detail View

Tapping a document preview leads to the Document Detail Page, which presents:
* Full-size images of the document
* Auto-generated title and semantic tags (e.g., "Expense,” ”Food”) based on extracted
content
* A concise summary description
* A clearly structured Extracted Information section containing editable key-value
pairs such as date, time, total amount, and vendor
* Linked related files, visually distinguished and tappable for quick navigation (e.g.,
related receipts or forms)
These elements together allow users to interact with their documents as structured knowledge,

not just static images.
3.5.5.2 Action Panel

At the top-right corner, users can find the export icon, which enables them to download
the document to local storage. At the bottom of the detail page, users are presented with
the critical deletion button, prominently placed in red for visibility, it removes the document
and all associated metadata. Each document supports a rich set of operations shown clearly
beneath the extracted information section:

» Help: Triggers a toolbar-style overlay that introduces available actions, reducing first-

time user friction.

* Parse: Triggers image-to-text parsing and metadata extraction, updating the extracted

fields in real-time

* Edit: Allows users to manually modify any field with inline input and keyboard sup-

port

* Clear: Removes all parsed data, which is especially useful for privacy-sensitive doc-

uments

* Copy: Copies all textual fields in a well-formatted layout to the clipboard for external

use

29

IGATE A S Chapter 3 App Design

Each action is associated with a clearly labeled icon, keeping the interface minimal yet ex-

pressive.
3.5.5.3 Intelligent Categorization

DocuSnap automatically generates semantic titles and category labels using LLM-
based summarization and classification. This enables clustering of similar documents and

facilitates downstream operations such as form autofill, advanced search, and timeline orga-

nization. (Illustration 3-8)

3 va Ty < a o v..

Documents € Lunch Receipt - Starbucks 3 & Lunch Receipt - Starbucks 3
=
Document
details
- .
: .
- "
help copy info clear
_‘ o v _ o A O v 50 v
o
& LunchReceipt-Starbucks 2 € LunchReceipt - Starbucks % < Lunch Receipt - Starbucks &
jvendor: Starbucks Coffee
Date: 2024-01-15 Food || Espense Calles Soot || Swmes || 0w slad
Time: 12:30 PM
Total Amount: §12.50 - 3 & v x (] (-] Foos || epenss | [coma
Payment Method: Credit Card
Items: Latte, Sandwich Parsing documest Extracted Information P °
. Stotucks T | © Extracted Information
2]
e nmm | ©
Verdor. Star.. ounsT. & B Ed Vendor St Joarst. & B
g we Uy uiep Ut Date 2220115 aiwielrjtiriulljofp “
asdfgh k.| - asdfghijk.I Expenns Bepoc Fem -
S zxcvbam@&@ © zxcvbnm@
m o, Q - = L mo, Q . = L]]

INlustration 3-8 Document Action Panel

30

IGATE A S Chapter 3 App Design

3.5.5.4 Form Handler: Smart Form Extraction and Auto-Fill

The Form Handler (Illustration 3—-9) module enables users to manage structured forms
with enhanced workflow automation. Just like documents, forms can be accessed through the
dedicated “Forms” tab in the global navigation bar. Each form is represented by a visually
distinct card with a title and date stamp for fast identification. A small icon floating on the

bottom-right side of the preview card indicates whether the form is filled or not.
3.5.5.5 Form Detail View

Tapping a form preview opens the Form Detail Page, which mirrors the document detail
layout but is adapted to handle structured form fields. Beside those presented in the document
details, this page distinguishes between the textual content into two categories:

* Extracted Information —structured key-value pairs with value available from the form

(e.g., “Company,” “Department,” “Fiscal Year”)
* Form Fields —user-fillable entries required by the form (e.g., “Amount,” “Pur-
pose,” “Manager Approval”)
Any missing information is clearly flagged in red text (“No value available”), guiding the
user to complete these fields. This smart visual cueing ensures forms are never submitted

incomplete or with overlooked sections.
3.5.5.6 Action Panel and Smart Operations

Besides functionalities available in the document detail page, this page provides more
actions tailored for form operation including
* Auto-Fill: Smartly retrieves data from the app’s internal document database to fill in
required form fields (e.g., employee name from contracts, date from receipts). Auto-
filled entries are shown in blue with editable input fields.
* Clear Form Fields: Wipes all filled form fields, in case our users want to restart the

form filling workflow.

3.5.6 Encryption: Security-Aware Data Storage

We implement a privacy-first architecture with robust, customizable encryption features
to ensure secure handling of all user data.

All documents are protected through end-to-end encryption, combining RSA and AES

31

IGATE A S Chapter 3 App Design

schemes to safeguard both data in transit and at rest. Sensitive content is automatically
masked before login, and users must complete PIN-based verification before viewing or edit-
ing any protected information. The PIN system enforces secure access at the application
level, ensuring that even if the device is compromised, user data remains inaccessible with-

out authentication.

Foms
- Form

0 O details

—_—
€ 7 o= %
Crracted Iformation
- " L]
copy info parse form images l auto fill retrieved info clear
((parse result 1]

« Expense Report Form + ¢ Expense Repart Form

¢ # s = x D @ & s = x 0 @
on wicn

Ilustration 3—-9 Form Action Panel

Users can configure custom backend server endpoints and public keys directly within the
app’s Settings page. This allows organizations or privacy-conscious individuals to deploy
their own self-hosted backend for maximum control over data flow and encryption keys. The
built-in configuration dialog provides clear instructions and ensures compatibility with our

open-source backend infrastructure.

32

IGATE A S Chapter 3 App Design

3.6 Usability Testing

To evaluate the real-world usability of our Ul mockup, we conducted a structured user
testing session based on the interaction prototype built with Loveable!'*!. The full interactive
design can be accessed via docusnap-mock-ui.lovable.app, and the underlying implementa-
tion is available on GitHub at JI-DeepSleep/DocuSnap-Mock-UIUX. A full screen-recorded
demo of a user walkthrough can be found in our provided video file user testing.mp4.

The usability test was conducted following the predefined tasks and evaluation metrics
described in our testing script detailed in Appendix 5. Each participant interacted with the
mock Ul across five representative tasks:

1. Import and Enhance a Document

2. Extract Key Information

3. Search Using Natural Language

4. Auto-Fill a Form

5. View and Verify Security Features
Users were encouraged to “think aloud” throughout the session. We also observed task com-
pletion time, number of clicks, and interaction errors. After completing all tasks, participants
filled out a short post-test questionnaire rating ease-of-use and feature clarity. Each task was
evaluated quantitatively against success metrics (e.g., number of taps, response time), while
qualitative observations helped uncover issues in UI design, interaction flow, and clarity of
function.

Our participants included both regular mobile users and individuals familiar with doc-
ument management apps. Testing was conducted remotely using video conferencing tools,

with screen-sharing enabled.

3.6.1 Summary of Findings in Usability Test

The usability testing revealed critical insights into the strengths and areas for improve-
ment in the DocuSnap interface. Qualitatively, users praised the intuitive layout, cohesive
color scheme, and effective iconography, particularly on the home page, which contributed
to a positive first impression. The natural language search functionality stood out, achiev-
ing a 100% success rate in testing, as users found it seamless and efficient. Additionally,

the document PIN verification step was well-received, with participants acknowledging its

33

https://docusnap-mock-ui.lovable.app/
https://github.com/JI-DeepSleep/DocuSnap-Mock-UIUX
https://sjtu.feishu.cn/file/B3pkbFvs0oOEcSxVFJpcpyy7nzg

IGATE A S Chapter 3 App Design

Table 3-2 Test result of DocuSnap Mock UIUX Usability Test

Tasks Evaluation Metrics Success Rate %
Import a photo and enhance it 2 clicks to import + n clicks to enhance it 100%

Get the extracted info of a doc 2 clicks to the doc/the PIN code page 80%

Search for a doc/form 1 click to the search bar 100%

Auto fill a form 3 clicks to the results 60%

View and Verify Security Features Users are prompted to enter PIN code 100%

clarity and value as a privacy measure.

However, several pain points emerged, particularly in visual design and workflow effi-
ciency. Users noted that the image enhancement interface appeared cluttered, with excessive
text and poor visual hierarchy, hindering quick comprehension. Extracted information was
described as overly plain, lacking emphasis or scannability. Workflow disruptions were also
evident: after enhancing an image, users were unexpectedly returned to the home screen in-
stead of the detail page, breaking task continuity. Similarly, search results did not directly
link to their corresponding document or form detail pages, causing confusion. The absence
of an auto-fill entry point on form detail pages further compounded usability issues, leaving
users uncertain about next steps. Functionally, participants expressed a desire for greater
control over parsing, clearer microcopy for actions like ”parse” or “edit,” and a dedicated
Documents/Forms tab for easier navigation. Traceability concerns were also raised, with
users requesting visibility into the source of auto-filled data for verification.

Quantitatively, task completion rates varied significantly as shown in Table 3—-2. While
photo import and enhancement (100% success), document search (100%), and security PIN
prompts (100%) performed flawlessly, extracting document information (80%) and auto-
filling forms (60%) saw lower success rates. These metrics highlight a disparity between
foundational functionalities and more complex interactions, particularly those involving multi-
step processes like form handling.

In summary, while the core UI/UX framework demonstrates strong usability, refinements
in visual hierarchy, task flow continuity, and feature discoverability—especially for form-
related tasks—are essential to elevate user efficiency and satisfaction. Addressing these gaps

will ensure a more cohesive and intuitive experience.

34

IGATE A S Chapter 3 App Design

3.6.2 Change to Final UI/UX Design

Based on insights from our usability testing, we implemented a series of targeted changes
to enhance the overall interaction experience, visual clarity, and workflow continuity of Do-
cuSnap.

To address user concerns around content discoverability, we introduced a persistent tab in
the bottom navigation bar for direct access to both “Documents” and “Forms.” Previously,
users had to navigate through intermediate steps to locate imported items, which felt buried
and unintuitive. This change aligns with industry-standard layouts and significantly improves
the visibility of stored content, allowing users to locate their materials with a single tap from
any screen.

In response to feedback that the image processing interface was visually dense and over-
whelming, we streamlined the layout by replacing verbose text with intuitive icons and con-
cise microcopy. This redesign reduced visual clutter, enhanced immediate recognition of
each function, and made the enhancement tools feel lighter and more approachable. The
revised design not only accelerated user decision-making but also improved aesthetic con-
sistency across screens.

One of the most disruptive issues identified during testing was the abrupt transition back
to the home screen after a document or form was processed. Users found this break in flow
disorienting. To improve continuity, we now directly navigate users to the corresponding
detail view after processing. This keeps them in context, allowing them to immediately verify
extracted content, edit fields, or export results without having to manually find the processed
item again.

Another key usability gap involved the search functionality. Although users could suc-
cessfully retrieve documents using natural language, they reported frustration when clicking
aresult led nowhere. We addressed this by linking each search result directly to its associated
detail page, removing friction from the search-to-action workflow and eliminating ambiguity
around where results would take the user.

Form handling also received critical functional upgrades. Originally, users could not
complete forms efficiently due to the absence of a clear auto-fill mechanism. In the updated
design, we embedded a “Fill Form”button directly within the form detail page. When tapped,

it retrieves relevant values from the document database and populates applicable fields. This

35

IGATE A S Chapter 3 App Design

feature drastically reduces manual input and has improved task success rates in follow-up
testing.

Lastly, to increase transparency and build user trust in automated filling, we added a
source-tracing mechanism for each auto-filled entry. Users can now view which document
provided a given value by tapping a small info icon next to the field. This addition improves
auditability, allows for quick corrections if needed, and reinforces user confidence in the app’s
intelligence.

Collectively, these refinements represent a user-centered evolution of the UI, making Do-
cuSnap not only more functional, but also more predictable, responsive, and aligned with how

users expect a modern productivity tool to behave.

36

ARl AT Chapter 4 App Development and Testing

Chapter 4 App Development and Testing

4.1 Front-end Development

The DocuSnap Android application employs a modern, responsive user interface built
using Jetpack Compose, Google’s declarative UI toolkit for Android development. The
frontend architecture follows Material Design 3 principles and implements a comprehensive
document management system. Our frontend development is open-sourced at github.com/JI-

DeepSleep/DocuSnap-Frontend. Our source code is organized as follows.

java.cn.edu.sjtu.deepsleep.docusnap

}— data
I— local # schema definition of on-device SQLite database
I— model # schema definition of in-app data structure
|—~ remote # schema definition to connect backend API
|‘ repository # global data storage and management

— Settings.kt

|

|

|

|

|

}— navigation # screen navigation controller

l— service # main functionalities: image toolkit and backend caller
}— ui

| |— components

| I— screens # definition of screen ui layout

| L— theme

}— util

}— viewmodels # connector of service and ui

}— AppModule.kt # singleton to access service and repository

L MainActivity.kt

Ilustration 4-1 Project structure of DocuSnap frontend

4.1.1 Design Pattern

The application adopts a layered architecture pattern that separates concerns between
UI components, business logic, and data management. The design follows the Model-View-
ViewModel (MVVM) architectural pattern, which is the recommended approach for Android

applications using Jetpack Compose.

37

https://github.com/JI-DeepSleep/DocuSnap-Frontend/tree/main
https://github.com/JI-DeepSleep/DocuSnap-Frontend/tree/main

AR SN =2 (VA9 Chapter 4 App Development and Testing

4.1.1.1 Architecture Components

The frontend architecture consists of several key components that work together to create
a cohesive user experience. The UI Layer is built entirely with Jetpack Compose compos-
ables, providing a declarative approach to interface development. This layer handles all user
interactions, visual rendering, and state presentation through screens like Home Page (the en-
try point), Search Screen, Document/Form Gallery and Detail, Camera Capture, Local Media
Selection and Settings with PIN verification. Navigation between these screens is managed
by the NavController through predefined Screen Routes.

The ViewModel Layer, consist of DocumentViewModel and ImageProcessingView-
Model, manages functional logic and state using Android Architecture Components, acting
as the bridge between the UI and data layers. These ViewModels receive user interactions
from the UI components and coordinate with lower layers to process requests.

The Repository Layer provides data access through the repository pattern, ensuring
global management of all files (documents and forms) stored in DocuSnap. The Documen-
tRepository serves as the single source of truth for document-related data operations.

Below this, the Service Layer contains specialized components: DeviceDBService han-
dles local SQLite database operations, ImageProcService manages image processing toolKkits,
BackendApiService facilitates communications with backend APIs, and JobPollingService
monitors background tasks to enable asynchronized backend procedure.

These services interact with the Data Layer which includes persistent storage through
Room Database (for structured data like Document, Form, Job, and Search entities) and
global Shared Preferences (for user settings).

The architecture integrates with External Services including CameraX API for cam-
era functionality, MediaStore for local media access, and a Backend Server for finegrained
processing, including OCR, LLM-based information extraction, etc. This layered approach
ensures clear separation of concerns, with each component having distinct responsibilities

and well-defined interaction patterns through interfaces.
4.1.1.2 Technology Stack

The application leverages modern Android development technologies to ensure optimal

performance and user experience. Jetpack Compose serves as the foundation for building

38

ARl AT Chapter 4 App Development and Testing

Ul Layer

MainActivity
NavController

Screen Routes

Image Processing

Home / Search Screen

Local Media

Camera Capture Document/Form Display

Settings Screen / PIN
Verification

ViewModel Layer

A
ImageProcessingViewModel DocumentViewModel

Service Layer

Repository Layer

A

[| [aronsore |

— —T

BackendApiService DeviceDBService

ternal Services B Data Layer
A
CameraX API | MediaStore API | Backend API - T R

Data Models

Document Entity Form Entity Job Entity Search Entity

Illustration 4-2 Frontend architecure of DocuSnap

declarative, reactive user interfaces that automatically update based on state changes. Mate-
rial Design 3 provides a comprehensive design system that ensures visual consistency and
accessibility across all application screens. Jetpack Navigation offers type-safe navigation
between screens, preventing runtime errors and improving code maintainability. ViewModel
and StateFlow provide reactive state management, enabling efficient UI updates without un-
necessary re-renders. Room Database handles local data persistence with SQLite abstraction,
while CameraX provides modern camera functionality integration. Finally, Coil handles im-

age loading and caching, ensuring smooth performance when displaying document images.

4.1.2 Individual UI Screen Design

The application features a comprehensive set of screens designed for optimal user expe-
rience in document management workflows. Each screen is carefully crafted to serve specific

user needs while maintaining consistency with the overall design language.

39

AR SN =2 (VA9 Chapter 4 App Development and Testing

4.1.2.1 Home Screen

The home screen serves as the primary entry point and information hub for the applica-
tion. It features a clean, hierarchical layout that guides users through the primary application
functions. The screen begins with a branded header containing the application title and a set-
tings access icon, establishing brand identity while providing quick access to configuration
options. A prominent search bar enables global document and form retrieval, allowing users
to quickly find specific content across their entire document library.

The main content area is divided into two primary sections: Document Import and Form
Import. Each section features dual-button interfaces that provide access to both camera cap-
ture and gallery selection. The document section uses primary container colors to distinguish
it from the form section, which employs secondary container colors. This visual distinc-
tion helps users understand the different processing workflows for documents versus forms.
The bottom section displays frequently used text information extracted from documents and

forms, providing quick access to commonly referenced data points.
4.1.2.2 Document Gallery Screen

The document gallery presents a grid-based layout optimized for efficient document
browsing and management. The screen implements a Lazy VerticalGrid component that effi-
ciently handles large document collections by only rendering visible items. Each document
is represented by a custom card component that displays essential metadata including docu-
ment name, description, upload date, and processing status. The cards feature subtle visual
indicators for document state, such as processing completion and usage statistics.

The gallery includes advanced interaction patterns through the ExperimentalFoundation-
Api, enabling multi-selection capabilities through long-press gestures. Selected documents
can be managed in bulk through context actions including deletion and export functionality.
The screen also integrates search functionality directly within the gallery interface, allowing

users to filter documents without navigating to a separate search screen.
4.1.2.3 Form Gallery Screen

The form gallery follows a similar design pattern to the document gallery but is special-
ized for form management. Form cards display additional metadata specific to forms, includ-

ing form field previews and completion status indicators. The interface distinguishes between

40

AR SN =2 (VA9 Chapter 4 App Development and Testing

completed forms and those still undergoing processing, providing clear visual feedback about
the current state of each form. The gallery maintains consistency with the document gallery

while highlighting form-specific features and workflows.
4.1.2.4 Document and Form Detail Screens

The detail screens provide comprehensive information and editing capabilities for indi-
vidual documents and forms. These screens implement a tabbed or scrollable layout that
organizes information hierarchically. The primary view displays the document or form im-
ages using efficient image loading through the Coil library, which handles Base64-encoded
image rendering with automatic caching and memory management.

The extracted information section presents key-value pairs in an organized, searchable
format. Each extracted data point includes usage tracking information, showing how fre-
quently specific information has been accessed. This feature helps users identify their most
commonly used data points. The screens also provide in-place editing capabilities for doc-
ument properties such as name, description, and tags, with real-time validation and error

handling.
4.1.2.5 Search Screen

The search screen implements a unified search experience that combines results from
documents, forms, and extracted text entities. The interface presents search results with rel-
evance scoring indicators, helping users quickly identify the most relevant matches. The
screen supports type-based filtering, allowing users to narrow results to specific content types.
The unified approach ensures users can find information regardless of whether it’s stored in

a document, form, or as extracted text data.
4.1.2.6 Settings Screen

The settings screen provides comprehensive application configuration options in an or-
ganized, accessible format. The screen is divided into logical sections including security
settings, backend configuration, and performance options. The PIN protection section al-
lows users to enable and configure security features, while the backend configuration section
provides access to server settings and cryptographic key management. Performance settings

allow users to customize the number of frequently used text items displayed throughout the

41

AR SN =2 (VA9 Chapter 4 App Development and Testing

application.

4.1.3 Navigation Controller

The application implements a sophisticated navigation system using Jetpack Navigation
Compose that provides type-safe routing and eflicient screen transitions. The navigation
architecture is designed to handle complex user workflows while maintaining performance

and user experience.
4.1.3.1 Navigation Architecture

The navigation system is built around a centralized NavHost component that manages
all screen transitions and state. The system uses sealed classes to define routes, ensuring
compile-time safety and preventing navigation errors. Each route is defined with specific
parameters and argument types, enabling the passing of complex data between screens while
maintaining type safety.

The navigation controller implements deep linking capabilities, allowing users to navi-
gate directly to specific documents or forms from external sources. The system also handles
back navigation intelligently, maintaining proper navigation state and preventing users from

getting lost in complex workflows.
4.1.3.2 Route Management

Routes are organized hierarchically to reflect the application’s information architecture.
Primary routes include home, search, camera capture, local media selection, image process-
ing, document and form galleries, detail screens, settings, and PIN verification. Each route
is designed to handle specific user tasks while maintaining consistency with the overall nav-
igation patterns.

The navigation system supports complex argument passing, enabling screens to receive
and process various data types including document IDs, image URISs, processing parame-
ters, and user preferences. This capability is essential for maintaining state across the image
processing workflow and ensuring users can seamlessly move between different stages of

document creation and editing.

42

AR SN =2 (VA9 Chapter 4 App Development and Testing

4.1.3.3 Bottom Navigation

The application features a bottom navigation bar that provides quick access to the three
primary application areas: Forms, Home, and Documents. The bottom navigation uses Ma-
terial Design 3 components with proper accessibility support and visual feedback. The nav-
igation bar automatically hides when users are in detailed views or processing workflows,

ensuring maximum screen real estate for content display.

4.1.4 ViewModel and Ul-Service Integration

The application employs a sophisticated ViewModel architecture that bridges UI compo-
nents with backend services and data management. This architecture ensures clean separation

of concerns while providing reactive, efficient state management.
4.1.4.1 DocumentViewModel Architecture

The DocumentViewModel serves as the primary business logic container, managing all
document and form-related operations. The ViewModel implements reactive programming
patterns using Kotlin Coroutines and StateFlow, ensuring that UI updates are efficient and
responsive. The ViewModel maintains separate state containers for documents, forms, search
results, and frequently used text information, enabling granular control over UI updates.

The ViewModel implements comprehensive error handling and loading state manage-
ment, providing users with clear feedback about operation status. All data operations are
performed asynchronously using coroutines, preventing Ul blocking and ensuring smooth

user experience even during complex operations.
4.1.4.2 Reactive State Management

The ViewModel uses StateFlow for state management, providing several advantages over
traditional LiveData. StateFlow offers better integration with Kotlin Coroutines, improved
error handling, and more efficient state updates. The reactive architecture ensures that Ul
components automatically update when underlying data changes, without requiring manual
refresh operations.

The state management system implements proper lifecycle awareness, ensuring that op-
erations are cancelled when ViewModels are destroyed and preventing memory leaks. The

system also handles configuration changes gracefully, maintaining state across device rota-

43

AR SN =2 (VA9 Chapter 4 App Development and Testing

tions and other configuration changes.
4.1.4.3 Service Integration

The ViewModel integrates with various services through the repository pattern, provid-
ing a clean abstraction layer between UI and business logic. The DeviceDBService han-
dles all local database operations, including document and form storage, retrieval, and up-
dates. The ImageProcService manages image processing operations, including corner detec-
tion, perspective correction, and image enhancement. The JobPollingService handles back-
ground job management, ensuring that long-running operations don’t block the UI. The Back-
endApiService manages communication with remote servers for document processing and

synchronization.
4.1.4.4 Usage Tracking and Analytics

The ViewModel implements sophisticated usage tracking for extracted information, en-
abling the application to provide personalized experiences and insights. The system tracks
how frequently specific data points are accessed, when they were last used, and which doc-
uments or forms contain the most valuable information. This data is used to populate the
frequently used text information section and to optimize search results.

The usage tracking system maintains privacy by storing all analytics data locally and
providing users with control over what information is tracked. The system also implements
proper data retention policies, automatically cleaning up old usage data to prevent storage

bloat.

4.1.5 Image Import and Processing

The application provides comprehensive image import capabilities through both camera
capture and local media selection, with advanced processing features that ensure optimal

document quality and readability.
4.1.5.1 Camera Integration

The camera functionality is implemented using CameraX, Google’s modern camera li-
brary that provides consistent behavior across different Android devices. The camera imple-

mentation includes comprehensive permission management, ensuring that users are properly

44

AR SN =2 (VA9 Chapter 4 App Development and Testing

informed about camera access requirements and can grant permissions when needed.

The camera interface provides advanced features including zoom control through pinch
gestures, manual exposure compensation for optimal lighting, and flashlight control for low-
light conditions. The interface supports multiple image capture, allowing users to photograph
multi-page documents or capture multiple angles of the same document for better processing

results.
4.1.5.2 Camera Features and User Experience

The camera interface is designed to provide professional-grade document capture capa-
bilities while remaining accessible to casual users. The preview display shows a real-time
camera feed with optional grid overlays to help users align documents properly. The interface
includes visual guides and feedback to help users position documents correctly for optimal
processing results.

The camera implementation handles various edge cases including permission denials,
hardware failures, and storage issues. The system provides clear error messages and recovery
options when problems occur, ensuring users can continue their workflow even when facing

technical difficulties.
4.1.5.3 Local Media Selection

The local media selection uses the modern Activity Result API, providing a streamlined
experience for selecting images from the device gallery. The implementation supports mul-
tiple image selection, allowing users to process several documents simultaneously. The sys-
tem handles various image formats and sizes, automatically optimizing images for processing
while maintaining quality.

The media selection process includes proper error handling for cases where selected im-
ages are corrupted, inaccessible, or in unsupported formats. The system provides clear feed-
back about selection status and automatically proceeds to the processing stage when valid

images are selected.
4.1.5.4 Image Processing Pipeline

The image processing screen provides comprehensive image enhancement capabilities

designed specifically for document processing. The processing pipeline includes several

45

AR SN =2 (VA9 Chapter 4 App Development and Testing

stages that can be applied individually or in combination depending on the specific docu-
ment requirements.

The corner detection feature uses computer vision algorithms to automatically identify
document boundaries in captured images!'¥. This feature is particularly useful for documents
that weren’t perfectly aligned during capture. The system can detect and highlight document
corners, allowing users to verify detection accuracy before proceeding with processing.

Perspective correction automatically adjusts document orientation and perspective to cre-
ate perfectly rectangular documents from angled captures. The system provides both au-
tomatic and manual correction options, giving users control over the final result. Manual

correction allows users to fine-tune corner positions for optimal results.
4.1.5.5 Image Enhancement Features

The image enhancement features include color enhancement for improving document
readability, contrast adjustment for better text visibility, and threshold filtering for creating
clean black-and-white versions of documents. The high contrast mode is particularly useful
for documents with poor lighting or low contrast, ensuring that text remains readable even in
challenging conditions.

The processing pipeline implements adaptive algorithms that automatically adjust pro-
cessing parameters based on image characteristics. This ensures optimal results across dif-
ferent document types, lighting conditions, and image qualities. The system also provides
preview capabilities, allowing users to see the effects of different processing options before

applying them.
4.1.5.6 Data Management and Storage

Images are processed and stored using Base64 encoding to ensure compatibility with
the local database system. The encoding process includes compression and optimization to
minimize storage requirements while maintaining image quality. The system implements
proper memory management to handle large images efficiently, preventing out-of-memory
errors during processing.

The application uses FileProvider for secure file sharing and temporary storage, ensuring
that image files are handled securely and efficiently. The FileProvider implementation in-

cludes proper permission management and cleanup procedures to prevent storage bloat and

46

AR SN =2 (VA9 Chapter 4 App Development and Testing

security issues.

This comprehensive frontend design demonstrates the application’s commitment to mod-
ern Android development practices, providing users with an intuitive and powerful interface
for document management and processing. The architecture ensures scalability, maintain-
ability, and optimal performance while delivering a rich user experience through advanced

UI components and seamless integration with backend services.

4.1.6 Image Processing Logic and Algorithms

While the previous sections described the user-facing Ul for image handling, this section
details the underlying technical implementation. It focuses on the end-to-end data pipeline
for images and the core computer vision algorithms employed to enhance document quality

and readability.
4.1.6.1 End-to-End Image Data Pipeline

The image processing pipeline provides a streamlined flow for handling images from
acquisition to final storage. The process begins with image acquisition, where both the Cam-
eraX API for new photos and the ActivityResultContracts API for gallery selec-
tions yield standard URIs. These URIs are then passed as route arguments via Jetpack Nav-
igation to the ImageProcessingScreen. Here, the ImageProcessingViewModel decodes each
URIinto a Bitmap, which serves as the active canvas for all subsequent operations. This de-
coding step includes downscaling images larger than 1080p to prevent memory errors. Upon
completion of all user-directed enhancements, the final, processed Bitmap is encoded into

a Base64 string, encapsulated within a Document entity, and persisted in the database.
4.1.6.2 Geometric Correction

The geometric correction feature is designed to rectify perspective distortions, transform-

ing a skewed image into a rectangular, front-facing document!!>-!"]

. This is accomplished
through a self-contained algorithmic pipeline within the ImageProcService that com-
bines advanced edge detection!'®! with a final linear transformation!®’.

The process is initiated with essential pre-processing steps, where the input Bitmap is
converted to grayscale and a 5x5 Gaussian blur is applied to reduce image noise*!. Subse-

quently, the Canny edge detection algorithm/®! is used to produce a binary map of the doc-

47

AR SN =2 (VA9 Chapter 4 App Development and Testing

ument’s potential edges. To improve the integrity of these edges, the system performs mor-
phological operations—specifically dilation followed by erosion—to connect broken lines
and remove noise artifacts. The resulting clean edge map is then scanned to find all closed
contours, with the largest contour by area assumed to be the document’s boundary. From this
primary contour, the four corner points are identified using a geometric heuristic that locates
the extremities of the shape!'”.

Once these four corner points are determined, the pipeline immediately proceeds to the
linear transformation stage. This is accomplished by the performPerspectiveCorrec-
t ion function, which calculates the required perspective transformation matrix!'®!. It defines
the four detected points as a source quadrilateral and a new, perfectly rectangular bitmap as
the destination. Using Android’s Matrix.setPolyToPoly method, it computes the ho-
mography matrix that maps the source to the destination points. This matrix is then used to

warp the original image, producing the geometrically corrected final output!!®.
4.1.6.3 Grayscale Conversion Algorithm

Grayscale conversion is a fundamental pre-processing step for nearly all document analy-
sis tasks, as it simplifies the image data from three color channels to a single intensity channel.
The application implements the standard Luminance method for this conversion, which
weights the red, green, and blue components of each pixel according to human visual per-

ception. The specific formula applied within the ImageProcService is:
Y=0299%xR+0.587xG+0.114 x B

where Y is the resulting grayscale intensity, and R, G, B are the original color components.
This calculation is performed pixel-by-pixel to transform the source Bitmap into a grayscale

representation ready for further processing.
4.1.6.4 High Contrast Algorithm

To address the common issue of low contrast in document photography, which can result
from poor lighting or shadows, the application employs a powerful high-contrast filter. This
feature is technically implemented using the Histogram Equalization algorithm. The purpose
of this algorithm is to improve global contrast by redistributing pixel intensities to span the

entire available dynamic range. The implementation in applyHighContrast begins by

48

ARl AT Chapter 4 App Development and Testing

computing a grayscale histogram of the image, which involves iterating through all pixels to
count the frequency of each intensity value, from 0 (black) to 255 (white). From this his-
togram, a Cumulative Distribution Function (CDF) is calculated, which maps each intensity
value to the cumulative number of pixels at or below that intensity, providing a representation
of the image’s tonal distribution. The CDF is then normalized and used to create a Look-Up
Table (LUT). This LUT serves as a mapping function that remaps the original pixel intensi-
ties to a new set of values, effectively “stretching” the most frequent intensity ranges to cover
the entire 0-255 spectrum. Finally, this LUT is applied to every pixel of the grayscale image;
each pixel’s original intensity value is replaced with its new, remapped value from the LUT

to produce the final, high-contrast image with significantly improved readability.

4.2 Back-end Development
4.2.1 In-App Database

A critical component of the DocuSnap Android app is its in-app database, which is de-
signed to provide secure, reliable, and efficient local data storage. Built using SQLite via
Android’s Room persistence library, the database ensures structured management of docu-
ments, forms, and job states, all of which are central to the app’s core workflows.

The database schema comprises three primary entities: DocumentEntity, FormEntity,
and JobEntity. DocumentEntity stores user-uploaded documents along with meta-
data such as titles, creation timestamps, and extracted textual information. FormEntity
captures user-submitted forms, their associated structure, and any autofilled fields. Mean-
while, JobEnt ity tracks the backend processing jobs, including their type (“doc”, “form”,
or “fill”), status, timestamps, and returned content. Each entity is fully integrated with
Room’s DAO layer to support complete CRUD (Create, Read, Update, Delete) operations.

To ensure compatibility, security, and flexibility, the system adopts multiple encoding
and serialization formats. Document and form images are encoded in Base64 for safe trans-
mission over JSON-based APIs, while structured data such as form fields and extracted infor-
mation are serialized using JSON. Additionally, SHA-256 hashing is used to verify content
integrity before and after transmission, offering a lightweight yet reliable safeguard against

tampering or corruption.

49

ARl AT Chapter 4 App Development and Testing

Frontend: User uploads document Frontend: FormDetailScreen triggers form job
— saved to DocumentEntity.base64Content — Parses fields into formFields
— JobEntity created — Fill job updates extractedInfo

it it

/ DocumentEntity FormEntity \
docld (PK) formld (PK)

base64Content base64Content MockTestScreen
extractedInfo o) » formFields (JSON) - createFakeDoc()
tags | extractedInfo - triggerFormJob()

JobEntity }
- simulatePolling()

jobld (PK)
-updateCompleteJob()
type ("doc"/"form"/"fill")
status

\\ — resultContent - J

Backend: Processes job
— Returns encrypted result
— Updates extractedInfo

Illustration 4-3 In-App Database Schema and Data Flow

Data access throughout the app is mediated via a repository layer, which encapsulates
all interactions with the underlying Room DAOs. This abstraction not only promotes clean
separation of concerns but also simplifies testing and future migration. For example, the
DocumentRepository provides high-level methods suchas insertDoc (),deleteDoc (),
and updateExtractedInfo (), while JobRepository handles creation and updates
of job states. These repositories are injected into ViewModel classes, which in turn expose
observable state to the Ul layer using LiveData or StateFlow.

The in-app database also plays a central role in inter-module communication. It pro-
vides a bridge between the UI, backend polling logic, and encryption layer. For instance, the
JobPollingService monitors remote job completion and writes the results back into the
local database. When a “doc” job completes, the corresponding ext ractedInfo is auto-
matically updated with decrypted backend output. Similarly, when a “form” job completes,
the app parses the returned JSON and updates both formFields and extractedInfo

fields of the related FormEnt ity. This mechanism ensures real-time synchronization be-

50

ARl AT Chapter 4 App Development and Testing

tween backend state and the user interface.

Robust error handling and data integrity mechanisms are built into the system. All write
operations are transactional, ensuring atomicity and rollback on failure. The polling service
includes retry logic with exponential backoff for transient failures, while integrity validation
using cryptographic hashes prevents inadvertent data corruption. These features collectively
enhance the app’s resilience under various network and runtime conditions.

Finally, the database module is built with extensibility in mind. JSON-based field stor-
age allows future expansion of form and document schemas without requiring disruptive
schema migrations. The modular DAO and repository architecture supports the integration
of advanced querying features, such as fuzzy keyword search or filtered document retrieval.
Moreover, the database abstraction ensures that future transitions to encrypted storage en-
gines or cloud-synced backends can be achieved with minimal disruption to other system
components.

In summary, the in-app database of DocuSnap provides a secure, efficient, and extensible
foundation for persistent data management. Its tight integration with other system compo-
nents—such as encryption, job processing, and the user interface—ensures a seamless user

experience while adhering to modern architectural and security standards.

4.2.2 Server Backend
4.2.2.1 Bachend Architecture

Open-sourced at github.com/JI-DeepSleep/DocuSnap-Backend, our backend implemen-
tation embodies a security-first architecture designed around two fundamental constraints
inherent to document processing systems: the asynchronous nature of LLM operations and
stringent requirements for handling sensitive identification documents. The asynchronous
architectural decisions stem from careful analysis of operational realities—specifically,
LLM requests exhibit orders-of-magnitude higher latency compared to conventional web
transactions, typically requiring 5-30 seconds for completion. This latency creates signifi-
cant risks of connection termination by network intermediaries (proxies, ISPs) or premature
client disengagement when users navigate away from processing pages. To address this, we
implemented a polling-based workflow where clients submit jobs through ephemeral HTTPS

connections and periodically check status updates, eliminating long-lived connections vul-

51

https://github.com/JI-DeepSleep/DocuSnap-Backend/tree/main

ARl AT Chapter 4 App Development and Testing

nerable to interruption. This approach not only aligns with the asynchronous API design of
our LLM provider Zhipu Al but also accommodates Android’s background process limita-

tions where applications may be terminated during extended operations.

Client Server CacheDB

Generate AES-256 key
Encrypt payload with AES

Encrypt AES key with RSA (Server Public)

POST job (RSA(AES_key) + AES(payload))
Decrypt AES key with RSA Private Key
Decrypt payload with AES key
Process through OCR/LLM pipeline
Encrypt results with client's AES key
Store AES(results)
loop [Poling every 5s]
GET job status
alt [Result ready]
Retrieve AES(results)
Return AES(results)
Decrypt with local AES key

[Error]

Return error details

[Pending]

Return "processing"

Client Server CacheDB

Ilustration 4-4 Hybrid encryption workflow for document processing

Security considerations necessitated a zero-trust architecture where sensitive docu-
ments never persist in plaintext on server infrastructure. The design acknowledges that tra-
ditional TLS encryption alone is insufficient against compromised certificate authorities or
server breaches. As illustrated in Figure 4—4, we employ a hybrid cryptographic scheme
combining RSA-2048 and AES-256 encryption. During client initialization, the server’s
RSA public key is embedded in the mobile application. When submitting documents, the
client generates a unique AES-256 key to encrypt the payload, then asymmetrically encrypts
this ephemeral key using the server’s RSA public key. A man-in-the-middle attacks enabled
by compromised certificate authorities will fail because the attackers have no way of getting

the true server’s private key. Also, this dual-layer approach resolves the performance limita-

52

AR SN =2 (VA9 Chapter 4 App Development and Testing

tions of pure RSA encryption—benchmarks on our OrangePi 5 Pro hardware showed RSA
alone required 10+ seconds for 10MB payloads versus 0.1 seconds for hybrid encryption.
The server decrypts the AES key using its private key, processes the document through the
OCR-LLM pipeline, and encrypts results with the client’s AES key before storage. Crucially,
AES keys exist only in volatile memory during processing, and cached results automatically
expire after a configurable period (default: 1440 minutes) or upon explicit client deletion
requests. This ensures document plaintext is never written to persistent storage, and compro-
mised servers yield only encrypted data that remains cryptographically inaccessible without
client-held keys. Admittedly, with budget and resource limitations, current dependencies
on Zhipu LLM pose a potential threat of sensitive information leakage. However, if we mi-
grate to locally-hosted LLLM models when computational resources permit, it would eliminate

third-party LLLM dependencies and keep all sensitive data under control in volatile memory.
4.2.2.2 Backend Implementation

The backend operates on an OrangePi 5 Pro single-board computer featuring a Rockchip
RK3588S octa-core ARM processor clocked at 2.4GHz with 4GB RAM!!, As depicted in
Figure 4-5, the system employs a multi-layered service architecture: Flask serves as the ap-
plication server behind Gunicorn WSGI workers and Nginx reverse proxy, while Cloudflare
Tunnel provides secure external access without public IP exposure. The OCR subsystem uti-
lizes CnOCR with thread-pooled workers (configurable concurrency: 4 threads) to handle
image processing'??!. A SQLite DB is used for the Cache DB to temporarily store processing
results.

Prompt engineering constituted a critical component for structuring LLM outputs, with
specialized templates developed through iterative refinement. Our approach incorporates
several key innovations: 1) Predefined field templates covering 85+ common document at-
tributes ensure consistent extraction, 2) Delimited content sections using <ocr_content>
tags explicitly separate instructions from input data to prevent prompt injection, 3) Strict
JSON output formatting with enforced escape character handling (\\, \”, etc.) guarantees
machine-readable results, 4) Example-based guidance improves instruction following, and
5) Recursive field disambiguation logic expands nested JSON structures into flat key-value
pairs using depth-first traversal, resolving inconsistencies where LLLMs occasionally return

hierarchical data. The prompt templates and JSON normalization functions are documented

53

ARl AT Chapter 4 App Development and Testing

Client Devices

[

HTTPS

Cloudﬂafe Tunnel

Nginx

Gunicorn

Flask App

£
Task Queue SQLite Cache
N
OCR Workers LLM Workers

\ \
‘ CnOCR Zhipu API

Illustration 4-5 Backend service architecture and component interactions

in the repository’s prompt s . py module.
4.2.2.3 Client Integration

The Android application interacts with the backend through a dedicated service layer
(BackendApiService.kt)thatabstracts cryptographic operations and network commu-
nication. This component handles RSA public key embedding during app initialization, AES-
256 key generation using Android’s SecureRandom, payload encryption via javax.crypto im-
plementations, and SHA-256 checksum validation for data integrity. The service implements
a coroutine-based workflow where document processing jobs are submitted asynchronously,
with results retrieved through a persistent WorkManager instance that polls task status at
5-second intervals. Cryptographic operations utilize Android Keystore-backed implementa-
tions to ensure secure key handling on client devices, with ephemeral keys cached in memory
during active sessions but never persisted to device storage. The architecture supports three

primary operations: document parsing, form parsing, and form filling, all implemented as

54

AR SN =2 (VA9 Chapter 4 App Development and Testing

suspend functions that integrate with Android’s lifecycle-aware components.
4224 Summary

The backend system provides a secure document processing pipeline through hybrid en-
cryption that prevents plaintext persistence on servers while maintaining practical perfor-
mance thresholds. Asynchronous job handling via polling ensures reliable LLM operations
despite network volatility and client-side interruptions. The implementation demonstrates
that zero-trust security principles can be effectively applied to resource-constrained edge de-
vices, with prompt engineering techniques enabling structured data extraction from diverse

document formats. Future work includes

4.3 Testing Results
4.3.1 Testing Tool

The application was developed exclusively for the Android platform, targeting Android
13 (API level 33) and higher. Testing was performed using both virtual emulators and phys-
ical devices to ensure compatibility and performance validation across different hardware
configurations.

For virtual testing, all team members utilized Android Studio’s built-in emulator with
device profiles ranging from Pixel 4 to newer models. These emulators employed system im-
ages with Google API support, specifically configured for Android 13 and above to replicate
real-world operating conditions.

Physical testing was conducted on a Xiaomi Redmi 14C (4GB RAM + 64GB storage vari-
ant) running Android 15. This device was intentionally selected as a performance baseline,
purchased new from Xiaomi’s official Taobao flagship store for just 377 RMB. As one of
the most affordable Android devices available during the testing period, its modest hardware
specifications provided a rigorous environment for evaluating application performance. Sub-
sequent sections will demonstrate the application maintained smooth operation even under
these constrained conditions.

Screenshots of the testing environments are provided in Appendix 6.

55

AR SN =2 (VA9 Chapter 4 App Development and Testing

4.3.2 UI Testing

The user interface underwent comprehensive testing to verify the functionality of key in-
teractive elements. All primary navigation buttons were tested for responsiveness and correct
routing behavior, with results confirming expected performance as documented in Table 4—1.

Critical action buttons across various screens were validated for proper functionality.
Testing covered buttons in the image processing screen (Table 4-2), document detail screen
(Table 4-3), and form detail screen (Table 4—4). While most buttons functioned as intended,
the “Auto” and “Color Enhancement” features in the image processing screen exhibited in-
consistent behavior that requires further investigation.

Selection mode functionality was thoroughly evaluated in both document and form gal-
leries. The testing confirmed that a long press on any preview card successfully activates
selection mode (Figures 4—6a and 4—6e), with subsequent taps properly toggling the selec-
tion state of additional cards. The interface correctly displays the number of selected files and
provides effective bulk operation controls. The top-right action button’s select/deselect all
functionality performed as expected (Figures 4—6b and 4-6f). Export operations successfully
downloaded all selected files to local storage (Figures 4—-6¢ and 4-6g), while delete opera-
tions properly triggered confirmation dialogs for batch deletion (Figures 4-6d and 4—6h).

4.3.3 Acceptance Testing for Features
4.3.3.1 Feature Group: Document and Form Understanding

To evaluate the functionality of our intelligent document processing pipeline, we con-
ducted acceptance testing on three core features—parse document, parse form, and fill form
—which collectively form the backbone of semantic document understanding in our sys-
tem. These features were tested using representative real-world document types, including a
government-issued driver’s license and a U.S. visa application form. The goal was to vali-
date the system’s ability to perform accurate key-value extraction, intelligent categorization,
cross-document linkage, and automatic field population.

The parse document feature was tested using a California driver license sample with a
resolution of 1314x698 pixels. The expected behavior was that the system would correctly
detect the document type, extract structured fields such as full name, address, date of birth,

license number, and expiration date, and attach semantic tags to aid in categorization and

56

Chapter 4 App Development and Testing

Table 4-1 Test result of all navigation buttons

Screen Button Expected Behavior Result
Search Open search page v
Setting Open setting page v
Home Camera Open camera for photo capturing v
Gallery Open local media for photo selection v
Link . . .
Jump to source file detail page of this textual info v
(Frequently Used Info)
Link . .
Search Jump to detail page of this file v
(Doc or Form)
Result]
Link . . .
Page Jump to source file detail page of this information v
(Textual Info)
Camera Gallery Open local media for photo selection v
Screen Done Proceed to the image processing with captured images v
Local
. Done Proceed to the image processing with selected local images v
Media
Image . .
) Done Save changes and navigate to file detail v
Processing
Document Preview Jump to detail page of this document v
Gallery Search Open search page v
Form Preview Jump to detail page of this form v
Gallery Search Open search page v
Link) i
Document . Jump to detail page of this related file v
. (Related Files)
Detail
Back Back to document gallery v
Link))
) Jump to detail page of this related file v
Form (Related Files)
Detail Link . .
)) Jump to source file detail page of this extracted field v
(Filled Form Fields)
Back Back to form gallery v
Bottom Home Shortcut to homepage v
Navigation Document Shortcut to document gallery v
Bar Form Shortcut to form gallery v

57

Chapter 4 App Development and Testing

Table 4-2 Test result of all action buttons in image processing page

Group Button Expected Behavior Result
Reset Clear all applied effects v
Primary Filter Toggle the secondary toolbar with enhancement options v
Toolbar Perspective Toggle the secondary toolbar with edge adjustment options v
Auto Apply auto processing template: monochrome + straighten X
Original Use original image color schema v
Secondary Apply monochrome filter:
Enhancement Monochrome o) o) v
Toolbar binarize pixel color to optimize text-background separation
High Apply high contrast filter: Y
Contrast amplify grayscale gap among pixels
Color Apply color enhancement filter: «
Enhancement preserve color while amplify difference
Secondary Straighten Apply automatic edge detection and display the detected 4 points v/
Perspective Apply the perspective correction based on
Apply . 4
Toolbar detected and manually-corrected 4 points
Table 4-3 Test result of all action buttons in document detail page
Button Expected Behavior Result
Export Export the document images to local media v
Parse Initiate a background job to call backend document parsing API v
Edit Toggle edit mode to manually modify extracted information values v
Clear Remove all extracted information from the document database v
Copy Copy all extracted information to clipboard in key-value format. v
Help Pop up a help dialogue with explanation of each buttons v
Copy e . .
Copy the specific information value to clipboard v
(Info value)
Delete Delete the document and navigate back to document gallery v

58

Documents Select Al

,
Q Search.
L _—

Chinese ID PACDL

250728 H sz

O

Academic Transcript
anasarar B

swes (o) () @)
g

a8 "]

Select All

Q

Fugitive Info Form Student Eligibility

202507:28 HO s g0

]

Undergraduate Withdrawal

o077 RS

1 selected

(e)

Documents Deselect All

Lq Search. Q

Chinese ID PACDL
20250728 H oamsorze

Academic Transcript

20250727

3 selected

Forms Deselect All

L Q search...

Fugitive Info Form Student Eligibility

250728 ki 20250728

Undergraduste Withdrawal
250727 g+

ssatet (o) (=) @D
\ N

a8 " B

®)

Chapter 4 App Development and Testing

Documents Select Al

e

ks e,

Chinese ID PACDL

Confirm Deletion

20250728 B msor2s

Are you sure you want to delete 3 selected
document(s)? This action cannot be

undone.
—
’\ Carcel /\ @

Academic Transcript

2250727

N\
2 selected (cancel)J(&

@ Exporting 2 document(s) to local
med

8 L3

Forms Select All

(Q search

= ™4

Fugitive Info Form Student Elig
20250728 HO 20502

Confirm Deletion

Are you sure you want to delete 3 selected
form(s)? This action cannot be undone.

) D
V| Cancel Delete
L C

Undergraduate Withdrawal

202507.27 "+

2 selected (Cancel) r\ *) °

@ Exporting 2 form(s) to local media...

& "]

(9] (h)

Illustration 4-6 Test result of selection mode in document and form gallery

Table 4—4 Test result of all action buttons in form detail page

Chapter 4 App Development and Testing

Button Expected Behavior Result
Export Export the document images to local media v
Parse Initiate a background job to call backend form parsing API v
Autofill Initiate a background job to call backend auto form filling API v
Edit Toggle edit mode to manually modify extracted information values v
Clear form Clear all form field values while keeping the field names intact v
Clear all Remove all extracted information and form fields completely v
Copy Copy all extracted information and form fields to clipboard v
Help Pop up a help dialogue with explanation of each buttons v
C'Iopy Copy the selected extracted info value to clipboard v
(info value)
Copy)

Copy the selected filled form field value to clipboard v
(form field)
Delete Delete the document and navigate back to document gallery v

search. Initially, the document appeared with no extracted information and a generic place-
holder title. Upon invoking the parsing engine, the system accurately extracted all target
fields. For instance, the full name was identified as “Ima Cardholder,” and the license num-
beras “DL11234568.” Semantic tags such as “License,” “California,” “ID,” and “Driving”
were generated, and a natural language summary of the document was created. These out-
puts matched the visible content of the document and demonstrated robust layout-aware OCR
and metadata structuring. Based on the completeness and precision of the extracted data, we
conclude that the parse document feature met its functional requirements.

Next, the parse form feature was evaluated using a nonimmigrant visa application form
(resolution: 1244x694), a highly structured, multi-field document requiring contextual un-
derstanding. The expected functionality was for the system to extract field-value pairs from
typed text and identify empty or missing fields. Additionally, the system was expected to link
values from previously parsed documents (e.g., the driver license) where applicable. After

upload, the form entered a processing state and was automatically renamed to “Nonimmi-

grant Visa App.” Semantic tags such as “Visa,” “Application,” “US,” and “Travel”
were applied, and a textual description of the form’s purpose was generated. Crucially, the
form parser successfully extracted the user’s sex (“F”) and populated the “Home Ad-

60

ARl AT Chapter 4 App Development and Testing

&

< Driver License

Californiam DRIVER LICENSE

o 11234568 st
exp 08/31/2014 END NONE
LNCARDHOLDER

RSTRNONE e 08311977

SEX F IR BRN EvES 8RN
Ma (ondhalolee 585 g ot tasm !

sS
DD 00/00/000ONNNANANFDIYY 08/31/2009

California driver license issued to Ima Cardholder, valid
until August 31, 2014. Includes personal details like date
of birth, address, and physical attributes.

N
[License][California | | 1D [Driving]

Processing status: COMPLETED

) / (] D o
Extracted Information
Document Type Driver License (m]
Full Name (English/Latin) Ima Cardholder (m]

2570 24th Street,
Address (Full) D
Anytown, CA 95818

IMlustration 4-7 Test result: document parsing inferface

dress” field by linking it to the address extracted from the driver license. Fields not present

in the source document, such as “Nationality” and “Phone Numbers,”

were appropriately
marked as “No value available.” This behavior reflects the system’s ability to both extract
data and reason over missing content. We consider this feature functionally complete with
strong performance in layout parsing and early-stage cross-document reference.

Finally, the fill form feature was assessed to determine whether the system could auto-
matically populate fields in a structured form using data from related documents. The test
involved revisiting the parsed visa application after parsing the driver license. The system
correctly inferred the shared context and auto-filled the “Home Address” and “Sex” fields.
Moreover, the user interface allowed manual editing of each field post-fill, supporting work-
flows where human validation is necessary. Users could interact with individual fields using
clipboard operations (copy, paste), enabling practical reuse of values across applications.
This demonstrates that the fill form component not only supports automation but also pro-
vides user agency for refinement and correction.

Overall, this group of features—parse document, parse form, and fill form—collectively

achieves the goal of transforming static documents into semantically rich, editable, and reusable

61

ARl AT Chapter 4 App Development and Testing

¥ ¢« Nonimmigrant Visa App A

Nationality

No value available

Sex & [
F

National Identification Number

No value available

Form for nonimmigrant visa application to the U.S., Home Address < [[]

requiring personal, travel, and employment details. 2570 24th Street, Anytown, CA 95818
r ~ ~

[Visa] Application] [us J [Travel J Home Telephone Number
4.

No value available
Processing status: COMPLETED
Business Phone Number

| -
..Ea u 0 No value available

Mobile/Cell Number

Auto-filling form...
No value available

Ilustration 4-8 Test result: form parsing and form filling interface

Database Structure | Browse Data | Edit Pragmas | Execute SQL

client id sha2s6 ftype status result error_detail created at last_accesse d

1|7a73bd38-. b-8fab. 37655421 182.. |doc | completed |EW81iuJATGChAnalMXgRHNYb+tz1ZBDLodc/. 2025-07-25 21:22:57 2025-07-25 21:23:08

2| beabobsg-8421-4a7e-899-04f71118982a 94b770322574b0aeded95785222c0cd3112.. | form completed ZxHOBIMA/SSAQNYLyv/SKuYuSIVSKIWVGiL /... 2025-67-25 21:27:58 2025-07-25 21:28:14

3| beabob8-8421-4a7e-8979-94f7118982a 0161b2673b4be223b457944cfcF47839e422.. | Fill completed RrSBtLZY19KiBe2XPL: 15UW1GKNACUVGIQy! 1tk eduDz... 2025-07-25 21:28:38 2025-07-25 21:28:45

4/5243ba04- d6d Fill completed | vI hMCbPAN1eRKROUBT rVHWNCG+n]5 52N rgG4f rEgtocdICTkxHINLFRSXIKS7L0dI1DC2EUdP+... 2025-07-25 21:29:19 2025-07-25 21:29:30

Iustration 4-9 Test result: encrypted server database

data assets. The tests confirm that the system performs accurate field extraction, intelligent
labeling, and automated information reuse across document boundaries, validating the un-

derlying architecture and design goals of our intelligent document management system.
4.3.3.2 Feature Group: Backend Server Encryption and Security

This section evaluates two interconnected security features: encrypted server database
and end-to-end document encryption.

The first feature, encrypted server database, requires that the “result” field within the
server’s database is stored in encrypted form. The second feature, end-to-end document
encryption, mandates that when examining request and response payloads independently of

TLS, both the request “content” field and response “result” field must be encrypted.

62

ARl AT Chapter 4 App Development and Testing

Iustration 4-10 Test result: encrypted request

Ilustration 4-11 Test result: encrypted response

For the encrypted server database feature, the expected behavior is that the “result” field in
the SQLite “tasks” table of the server database contains data in an encrypted format, appear-
ing as non-human-readable characters. For end-to-end document encryption, the expected
behavior is that the request “content” and response “result” fields, when inspected in payloads
without relying on TLS, appear as non-human-readable encrypted strings.

The test setup utilized a mockup web UI as the client application to interact with the
backend server, using a document parse job as the test scenario. For evaluating end-to-end
encryption, browser inspection tools were employed to examine the request and response
payloads, focusing on the relevant fields. Screenshots of these inspections are provided in
Figure 4-10 and Figure 4-11, which capture the payload structure and encryption status.
For testing the server database encryption, the server’s SQLite database was retrieved using
rsync and opened with SQLite Browser to inspect the “tasks” table, as shown in Figure 4-9.
The database table contains standard fields including client identifiers, hash values, task type,
status, and the target “result” field.

The test results for the encrypted request in Figure 4-10 show that the “content” field in
the request payload consists of non-human-readable characters with no discernible plaintext
structure. The encrypted response in Figure 4—11 displays a “result” field containing similarly
unreadable characters with no apparent meaningful content. The server database inspection
in Figure 4-9 reveals that the “result” field in the “tasks” table contains only non-human-
readable characters, with no visible plaintext data.

Evaluation of the encrypted server database feature confirms that the “result” field in

the database meets the expected behavior, as it contains exclusively encrypted, non-human-

63

ARl AT Chapter 4 App Development and Testing

Settings

PIN Protection
Require PIN to access the app

Backend Configuration ()

Backend URL

1ttps://docusnap.zjyang.dev/api/v

Backend Public Key

MIIBIJANBgkghkiG9wWOBAQEFAAO
CAQ8AMIIBCgKCAQEA4XDFLQDY
tdJ92/6142KH
TCfcXUYRZ20Ly6BgnBICc4l554Z

ml HI Ri\//

Ilustration 4-12 Test result: self-hosted backend configuration interface

readable data. For end-to-end document encryption, both the request “content” and response
“result” fields demonstrate the required encrypted state, appearing as non-human-readable
strings in payload inspections. These results confirm that both features satisfy their respective

requirements, with all critical data fields properly encrypted as intended.
4.3.3.3 Feature: Self-hosted Backend Option

This section evaluates the Self-hosted Backend Option feature, which enables users to
deploy and configure their own backend infrastructure for enhanced data control. As shown
in Figure 4—12, the implementation provides a configuration interface for managing backend
settings. The expected behavior requires that users can deploy their own backend server,
modify the backend URL prefix, and utilize custom RSA key pairs, ensuring complete data
sovereignty through trusted infrastructure without hardcoded dependencies on default back-
end URLs or public keys.

The test setup leverages a dedicated settings page (illustrated in Figure 4—12) containing
editable fields for Backend URL and Backend Public Key. This approach intention-
ally avoids complex test environments by treating the default configuration—pre-filled with
initial URL and key values—as a valid special case of the self-hosted functionality. Valida-
tion confirms the absence of hardcoded default backend parameters, verifying instead that the

application supports dynamic updates through the settings interface where users can freely

64

AR SN =2 (VA9 Chapter 4 App Development and Testing

substitute default values with custom configurations.

Test results demonstrate successful implementation through the settings interface, which
presents clearly editable fields for both backend URL and RSA public key in PEM format.
Crucially, no hardcoded values obstruct customization, enabling users to fully replace default
configurations with their own infrastructure details while maintaining complete application
functionality. This flexibility confirms that backend parameters are dynamically managed

rather than statically embedded in the application code.
4.3.3.4 Feature: Geometric Correction

The geometric correction feature is designed to rectify document perspective through a
sequential workflow: automatic corner detection upon straighten command activation, fol-
lowed by a mandatory manual adjustment stage, culminating in perspective transformation.
Expected behavior requires the system to display four draggable corner points connected by
dashed boundary lines after automatic processing. Users should be able to apply accurate
auto-detected corners immediately without manual intervention, while cases with detection
failures permit full point repositioning. The perspective correction must generate front-facing
rectangular outputs in the preview window upon apply confirmation while preserving origi-
nal aspect ratios.

The test setup utilized two documents with differing resolutions and contrast charac-
teristics: a 1920x1080 high-contrast document supporting successful auto-detection, and a
1280x720 low-contrast document inducing auto-detection failure. Both images underwent
identical processing protocol: initial upload to the document snap application, straighten
command activation, observation of automatic detection outcomes, progression to manual
adjustment interface, and final application of perspective correction. Testing specifically
measured initial corner detection accuracy, manual adjustment responsiveness, and output
transformation quality.

The test result demonstrates distinct processing paths converging to successful perspec-
tive correction, as documented in Figure 4-13. For the high-contrast document (Figure 4—
13a), the initial view displays the unprocessed document. After straighten activation (Figure
4-13b), the interface shows four precisely positioned draggable points at document corners.
Final perspective correction (Figure 4-13c) produces a front-facing rectangular output. For

the low-contrast case (Figure 4—13d), the initial view presents the challenging document.

65

AR SN =2 (VA9 Chapter 4 App Development and Testing

Straighten activation (Figure 4—13e) reveals significantly misplaced corner points due to
auto-detection failure. After manual adjustment (Figure 4—13f), corner positions are cor-
rected to proper document boundaries. Both workflows ultimately generate geometrically
correct outputs as demonstrated in Figure 4—13c.

The evaluation confirms full specification compliance across both test cases. The high-
contrast document achieved accurate auto-detection as evidenced by proper corner place-
ment in Figure 4-13b, enabling immediate application without manual adjustment. The low-
contrast case demonstrated effective failure recovery through manual repositioning in Figure
4-13f, successfully compensating for initial detection errors. Perspective correction consis-
tently generated mathematically accurate rectangular outputs as shown in Figure 4—13c. The
mandatory manual adjustment stage provided necessary corrective capability without im-
peding efficient workflows when auto-detection succeeded. Both document resolutions were

processed appropriately with no observable scaling artifacts.
4.3.3.5 Feature: Image Enhancement

The image enhancement feature provides grayscale conversion and high-contrast monochrome
filtering capabilities to optimize document legibility. Expected behavior requires the system
to generate a grayscale version preserving all visual information while removing color data
when the grayscale option is selected. For high-contrast mode, the system should apply adap-
tive thresholding to produce a binary black-and-white output that maximizes text-background
separation, eliminating shadows and color variations while preserving character integrity.
Both transformations must maintain original document proportions and resolution without
introducing artifacts or data loss, and should be visually accessible through the application’s
preview interface.

The test setup utilized a 1920x1080 color document containing both text and graphical
elements. The evaluation procedure involved processing the same document through both
enhancement pathways: first applying grayscale conversion to verify luminance preserva-
tion, then applying the high-contrast monochrome filter to assess binarization quality. Test
metrics included color channel analysis for grayscale output, contrast ratio measurement for
monochrome output, legibility assessment of fine text elements, and interface validation of
the filter selection mechanism across both transformations.

The test result demonstrates successful implementation of both enhancement modes,

66

P IAGE R

&
4
=
&
<

< Image Processing

172 12

< Image Processing

v/ Apply

(#- Auto) ([Filter) (12 Perspective) CRe

(b) Successful auto-corner de-

Come) (o) (o) (om

(a) High-contrast
(1920x1080)

document
tection

< Image Processing

2/2

¢ Image Processing

v/ Apply

2/2

(#- Auto) ([Filter) C 12 Perspective) CRe

EIEDIES @

(d) Low-contrast
(1280x720)

document

(e) Failed auto-corner detection

Chapter 4 App Development and Testing

< Image Processing

1/2

(#:Auto) ([Filter) (12 Perspective) CRe

(c) Perspective-corrected out-

put

+/ Apply

< Image Processing

2/2

(#-Auto) ([Filter) C 11 Perspective) CRe

(f) Manual corner adjustment

Ilustration 4-13 Geometric correction workflow: (a-c) High-contrast document processing

showing successful auto-detection and correction; (d-f) Low-contrast document requiring manual
adjustment after auto-detection failure

67

IGATE A S Chapter 4 App Development and Testing

as shown in Figure 4-14. The grayscale conversion (Figure 4—14a) presents a luminance-
accurate representation with complete color data removal while preserving all textual and
graphical content. The high-contrast transformation (Figure 4—14b) exhibits effective bina-
rization with sharp text-background separation. Both interface views confirm the respective
filter selections (’Original” vs "Monochrome’’) with documents displaying appropriate trans-
formations - the grayscale output maintaining tonal variations and the monochrome output
showing pure black text on white background, successfully removing color artifacts while

maintaining character integrity.

< Image Processing ¢ Image Processing

11 11

it WS SNERCRVE SUIN

«-.-.—l-—-um-m-n-u—--——-n—

o e e Dy T B i e et 97
S M it g e

= hroie dem. P st @i Mg, A M e
oty ol >

e aane] --—.--,.: o o LD e
s Ml e b o i 70 N A ey g S

" i e gty g s Rl Colgs DA
e A g s i S bt B 1 Wl et e
it R it o 1O s . O D o
g o . G B et b i
Gl % o oy e M .

K Maad
d el oo
=
j Sy T
D e "‘I” B By - "-
e

T Pt et et o s i, g s i
e s PICRALL met gt g 5 v rvngs b b

< C Original > ((® Monochrome > < (C Original > () < @ High Contrast
< #~Auto > < [Filter > (13 Perspective > < CRe (#~ Auto) ([Filter) C 12 Perspective) C C Re

(a) Grayscale conversion (b) High-contrast monochrome filter

Illustration 4-14 Image enhancement transformations: (a) Grayscale conversion preserving
document details; (b) Binarized output optimizing text-background separation

The evaluation confirms full compliance with enhancement specifications. Grayscale

68

AR SN =2 (VA9 Chapter 4 App Development and Testing

conversion successfully preserved all document content while eliminating color information,
as verified through pixel value analysis showing proper luminance conversion (Y = 0.299R
+ 0.587G + 0.114B) and histogram analysis confirming full tonal range preservation. The
high-contrast filter demonstrated excellent adaptive thresholding in Figure 4—14b, achieving
a text-to-background contrast ratio exceeding 20: 1 while maintaining stroke integrity of small
characters (verified at 6pt font size). Both transformations preserved the original 1920x1080
resolution with zero observable compression artifacts or geometric distortion. The interface
correctly reflects filter selection states, satisfying all requirements for document optimization

and preparation for subsequent OCR processing.
4.3.3.6 Feature: Frequently Used Info Recommendation

This section evaluates the Frequently Used Info feature, which dynamically displays the
most frequently and recently accessed textual information on the home page. As illustrated
in Figure 4-15a, users can configure the number of top recommendations via a dedicated
settings page. The expected behavior ensures that upon launching the home page, a scrollable
list of recommended entries is displayed, complete with copy functionality and direct links
to the source files. The list updates in real time as users interact with the system—such as
increasing access to specific files or copying key-value pairs—ensuring the recommendations
remain relevant.

For testing, a controlled environment was established using a settings page with ad-
justable parameters, including the Frequent Text Info field, which determines the
maximum number of entries displayed. Two mock documents—a student transcript (Figure
4-15b, 4-15d) and a university withdrawal application form (Figure 4-15c, 4-15e), were
imported to simulate user interactions. After importing, the detail pages of these files were
accessed at different times, and specific fields were copied to verify whether the recommen-
dation list accurately reflected user behavior.

Initially, the application launched in an empty state, resulting in no entries in the fre-
quent info section (Figure 4-15f). However, once the two files were imported and parsed,
the home page populated the list with exactly 10 key-value pairs (Figure 4—16a), matching the
predefined setting. A series of sequential tests were then conducted to validate the dynamic
updating mechanism.

First, opening the detail page of the Undergraduate Withdrawal form increased its access

69

1:30 A

Require PIN to access the app

Backend Configuration

Backend URL

https://docusnap.zjyang.dev/api/v1/

Backend Public Key

MIIBIJANBgkqhkiGO9wWOBAQEFAAOCAQS
AMIIBCgKCAQEA4XDFLQDYtdJ92/6142
KH

TCfcXUYRZ20Ly6BgnBICc41554ZmLHL
RiV//

Frequent Text Info

Number of frequently used text items to show on

home page

Count (1-50) ——98 —
(10

Save Settings

a L B

< Academic Transcript

L Transcript J{ Education J

| shanghai Jiao Tong University J\ Undergraduate

8 /
Extracted Information

Full Name (English/

X Li Xiaoming
Latin)

Student ID 2021XXXXX

Computer Science
Major
and Technology

School of

Electronic
College Information and

Electrical

Engineering
Enroliment Date Sep 2021

GPA 1.3/43

a ®

(d) Doc detail

L] [m] (2]

Documents

[Q Search...

Academic Transcript

20250727

1:45 A 3G

Undergraduate Withdrawal
Form

(" Education J [withdrawal |
L J

‘ Shanghai Jiao Tong University l

&«

B + 7 0D
Extracted Information

Undergraduate

Form Type
& Withdrawal

EisREAF AR
ERFEHSR

Document Title

HE AR
Instructions HREMFIEESR
m

Form Fields

#E& » 0

Li Xiaoming

3

No value available

(e) Form detail

3

Chapter 4 App Development and Testing

Undergraduate Withdrawal
20050727 B+

1:30 A

DocuSnap

Your Al-powered Personal Document Assistant

/ N
Q, Search...

\

Import Document

a Camera \g Gallery
Import Form

E Camera |§ Gallery
Frequently Used Info

No extracted text info available yet. Upload
documents or forms to see extracted information
here.

(f) Empty state

Ilustration 4-15 Test setup for frequently used info feature

70

ARl AT Chapter 4 App Development and Testing

3G4i

Import Document B camera B camera ™ Gallery

m Camera = Gallery
L Import Form Import Form

Import Form [camera M Gallery

m Camera |_! Gallery

ﬂ Camera |§ Gallery

Frequently Used Info Frequently Used Info

Frequently Used Info Form Type: Undergraduate Withdrawal of

Student ID: 2021XXXXX oD

Document Title: Li§3BAYAHRIAEIRFE
#&

Instructions: HE FIE AR EEAREFRYIE -

ol (X (e sy AL s - o[Form Type: Undergraduate Withdrawal (SN]

Document Title: EiS3EAFARIAIRFH
®f
#®
Instructions: S a1 HIAEAREREFAFE
-
BEm

Student ID: 2021XXXXX o h

>0

Major: Computer Science and Technology e IfJ BEEm

College: School of Electronic Information Full Name (English/Latin): Li Xiaoming o0

e o[
and Electrical Engineering Student ID: 202TXXXXX ®[ATRIEnE o
Enrollment Date: Sep 2021 @0

Major: Computer Science and Technology e 0 Full Name (English/Latin): Li Xiaoming [

GPA: 1.3/4.3 @ .
College: School of Electronic Information - Major: Computer Science and Technology < I
Course 1 Name: Advanced Mathematics

(Upper)

and Electrical Engineering
@ College: School of Electronic Information e
Enroliment Date: Sep 2021 Sl and Electrical Engineering A

Course 1 Credits: 5 0 .
Q GPA: 1.3/4.3 Ch] Enrollment Date: Sep 2021 =Y 5}

Course 1 Grade: 48 ®h Course 1 Name: Advanced Mathematics

s Course 1 Name: Advanced Mathematics
(Upper)

. e [0
Course 1 Status: Failed o0 (Upper) o

(a) (b) (©)

Ilustration 4-16 Test result: quick access list is refreshed to reflect user access pattern in real time

count, elevating its position in the recommendation list (Figure 4-16b). Next, copying the
student ID field twice from the home page marked it as the most frequently used individual
piece of information. Finally, copying the GPA field from the Undergraduate Transcript detail
page incremented its usage counter, placing it above other transcript-related entries but below
the student ID and withdrawal form due to their higher interaction counts (Figure 4—16c).
The test results confirm the successful implementation of this feature. The frequency
scoring mechanism effectively tracks user interactions with documents, forms, and textual
data, while the real-time updates ensure recommendations remain aligned with user habits.
By providing quick access to frequently used information, this feature enhances usability and
efficiency. Thus, the Frequently Used Info functionality is deemed successfully implemented

as an MVP feature.

71

AR SN =2 (VA9 Chapter 4 App Development and Testing

4.3.3.7 Feature: Copy and Paste of Extracted Information

This feature is designed to enhance data usability by allowing users to easily select and
reuse text extracted from documents in other applications or within DocuSnap itself.

The expected behavior is for the system to copy any extracted data field to the clipboard
when its dedicated icon is tapped. The copied content must then be perfectly paste-able into
any internal or external application without corruption or modification.

For the test setup, we utilized a previously parsed California driver’s license and specif-
ically targeted the full name field for the copy-and-paste operation. The test procedure in-
volved copying the name “Ima Cardholder” and then attempting to paste it into two desti-
nations: the app’s internal search bar (internal paste) and an external messaging application
(external paste) to verify cross-app compatibility.

The test results were successful. Tapping the dedicated copy icon for the “Full Name”
field seamlessly copied the name “Ima Cardholder” to the clipboard. It was then pasted
perfectly into both the internal search bar and the external application, appearing exactly as
“Ima Cardholder” in the source document. This confirms that the copied content maintains
its integrity without corruption during both internal and external paste actions.

Based on these results, we conclude that the copy-and-paste functionality fully meets the

acceptance criteria, providing a reliable mechanism for data portability.
4.3.3.8 Feature: Basic Document Filtering

The document filtering feature is a core organizational tool intended to help users quickly
locate specific documents by applying simple filters based on document attributes.

The expected behavior is for the system to accurately filter the document list based on
user-selected criteria, such as document type. The interface must clearly indicate the active
filter and display a proper “empty state” message when no documents match.

The test setup involved populating the application with a mixed collection of documents
containing various semantic types assigned by the parsing engine, such as ‘“Receipt” and
“License”. The test procedure focused on applying a filter for the specific document type
“License”. We also tested the system’s response to a filter that would yield no results to
validate the empty-state handling.

The test results demonstrated flawless execution. When filtering by the document type

72

ARl AT Chapter 4 App Development and Testing

“License”, the view correctly updated to display only the documents with that tag, while all
other document types were hidden. When applying a filter for a document type not present
in the list, the system correctly displayed a message indicating no results were found. These
outcomes are illustrated in Illustration 4-17.

& Search Results
< Search Results

[Q driver license ®] n
[0., unkown pod]

1 results found

M Driver License Mo results found

Try different search terms

' ~ =
| Califormis FOR5-07-27
-

Licenge

(a) A successful search returns the correct item. (b) "No results found’ state is handled correctly.

Ilustration 4-17 Test results for the document filtering feature.

The filtering feature successfully meets all acceptance criteria, providing an accurate and

user-friendly method for navigating document collections.
4.3.3.9 Feature: Basic PIN Protection

This feature provides basic security for the application by requiring users to authenticate
with a predefined PIN before accessing DocuSnap. Once a PIN is configured in the settings
(Figure 4-18a), subsequent app launches will prompt the user for verification, ensuring only
authorized access.

To validate this functionality, we enabled the PIN option in the settings and restarted
the application. As expected, the PIN verification screen appeared upon relaunch (Figure
4-18b), confirming that the authentication mechanism works as intended. Given its correct

behavior and successful implementation, this feature is marked as completed.

73

ARl AT Chapter 4 App Development and Testing

& Settings Enter PIN

Enter your PIN to access DocuSnap

PIN Protection 0
Require PIN to access the a
! PP PIN
PIN (4-6 digits)
Confirm PIN
Forgot PIN?
(a) (b)

Illustration 4-18 PIN protection: setting and verification

4.4 Performance Testing

To complement the feature-based acceptance testing, we conducted performance testing
to quantify the latency of core operations. This evaluation focused on computationally inten-
sive tasks to ensure the application remains usable even on low-end hardware. The results
confirmed that while demanding operations have measurable latency, the overall user expe-
rience is not compromised.

The test was conducted on Redmi 14C with DocuSnap v1.1.2 release build and about
300ms RTT to the backend server.

Table 4-5 Performance Testing Results

Test Item Average Response Time
Application Startup <Ils
Image Edge Detection (3000x4000 px) 3s
Document Parsing (Driver’s License) 20s
Form Autofill (Change of Address Form) 18s
General Ul Interaction <ls

The results of our performance testing are summarized in Table 4-5. Both the applica-

tion startup time from a cold start and general Ul interactions—such as navigating between

74

AR SN =2 (VA9 Chapter 4 App Development and Testing

screens and scrolling—were measured at under one second, ensuring a fluid user experience.

For on-device image processing, we focused on the automatic edge detection feature, a
critical step in geometric correction. Using a driver’s liscence as a test image, this operation
took an average of 3 seconds.

The most time-intensive features were those reliant on backend LLM processing. The
document parsing feature, tested on the driver’s license, took an average of 20 seconds to
extract and display the key-value pairs. Subsequently, we used a change of address form to
test the form filling feature using the parsed data. The task was completed in an average of
18 seconds. These timings are considered acceptable given the complexity of the Al-driven

tasks and the constraints of the test environment.

75

AR SN =2 (VA9 Chapter 5 Conclusions

Chapter 5 Conclusions

5.1 Discussion

This thesis presents DocuSnap, an Al-powered personal document assistant that ad-
dresses long-standing challenges in document digitization, organization, and retrieval. Mod-
ern individuals manage an increasingly diverse set of documents—ranging from physical re-
ceipts to digital IDs—and yet lack a unified tool that is both intelligent and privacy-conscious.
DocuSnap bridges this gap by integrating computer vision, layout-aware OCR, and backend-
accessed large language models into a seamless mobile application.

Through extensive user interviews and usability testing, we identified and validated key
pain points that existing solutions fail to address, including poor OCR accuracy, fragmented
storage workflows, lack of intelligent tagging, and limited privacy control. DocuSnap re-
sponds with a five-stage processing pipeline: image enhancement, OCR extraction, LLM-
based structuring, semantic tagging, and indexing. Each component was designed with per-
formance and user experience in mind, ensuring robust functionality while maintaining us-
ability on mobile devices.

In practice, our system allows users to digitize documents quickly, extract structured
key-value data, organize files automatically, and retrieve them through intuitive queries. The
successful outcomes in both feature validation and acceptance testing demonstrate that Do-
cuSnap can serve as a highly functional and user-friendly solution for personal document

management.

5.2 Main Conclusions

Several key conclusions can be drawn from this work.

First, integrating semantic intelligence directly into the document pipeline signifi-
cantly reduces user effort. By using a large language model to convert raw OCR outputs
into structured JSON representations, the system eliminates the need for manual parsing or
editing. This transformation enables the app to understand document types, extract fields like

totals or dates, and categorize files appropriately without user intervention.

76

AR SN =2 (VA9 Chapter 5 Conclusions

Second, our findings underscore that user-centered design is critical for adoption and
satisfaction. From the home screen layout to the one-tap document enhancement and mod-
ular editing features, every design decision was informed by direct user feedback. The result
is an interface that aligns with users’ mental models and supports common workflows such
as form filling, searching by context, and batch exporting.

Third, we demonstrate that privacy-preserving backend inference is feasible without
compromising user control. By performing semantic extraction and structuring through a
secure backend API while ensuring that all communication is encrypted end-to-end, the sys-
tem offers strong privacy guarantees. Document content and metadata are encrypted before
transmission, and only the user holds the decryption key, ensuring that the backend never
accesses plaintext data. This architecture preserves both privacy and flexibility while lever-
aging powerful models hosted remotely.

Fourth, we conclude that strong security measures can be integrated without degrad-
ing user experience. Our end-to-end encryption scheme, built upon RSA and AES protocols,
secures both the content and metadata of documents. By implementing transparent encryp-
tion workflows and PIN-based authentication, DocuSnap allows users to benefit from robust
protection with minimal friction.

Lastly, cross-document intelligence unlocks entirely new workflows. The app’s abil-
ity to associate related documents—such as linking a purchase receipt to its warranty or a
passport to a visa form—Tlays the groundwork for contextual task automation. Combined
with semantic search and autofill capabilities, this paves the way for a proactive assistant that

supports users beyond mere storage.

5.3 Outlook

Looking ahead, there are several promising directions to further develop and expand the
capabilities of DocuSnap.

One avenue involves personalizing the language model through user-specific adap-
tation. Leveraging federated learning or secure feedback loops could allow the system to
learn from a user’s specific document styles and terminology, improving the accuracy of
field extraction and categorization over time without compromising data privacy.

Another opportunity lies in extending the generalization of form templates. While

77

AR SN =2 (VA9 Chapter 5 Conclusions

the current system supports a curated set of forms, adding support for few-shot learning
or community-contributed templates could vastly expand its coverage. This would enable
DocuSnap to accommodate forms from universities, employers, and government agencies
with minimal developer input.

A third direction is enabling privacy-preserving synchronization across devices. Im-
plementing encrypted peer-to-peer syncing would allow users to access their document li-
brary on multiple devices while preserving the privacy guarantees of encrypted storage. This
could be particularly useful for users who alternate between phones, tablets, and desktops.

We also envision enhancing accessibility and internationalization. By supporting
voice input, handwriting recognition, and multi-language document handling, DocuSnap can
serve a broader population, including users with disabilities or those working across multi-
lingual environments.

Finally, commercial integration and deployment offer practical avenues for impact.
DocuSnap could be integrated into enterprise workflows—such as HR onboarding systems,
travel visa platforms, or academic portals—enabling seamless document submission and ver-
ification. With its secure and intelligent foundation, the app is well-positioned to function as
a trusted bridge between individuals and institutions.

In summary, DocuSnap reimagines mobile document management by transforming static
files into semantically rich, secure, and actionable assets. It demonstrates that with the
thoughtful integration of backend Al, privacy engineering, and human-centered design, per-
sonal productivity tools can evolve into intelligent assistants that empower users in their ev-

eryday lives.

78

I e B Al & References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

References

Structured Data Extraction from PDFs Using LLMs[EB /OL]. 2024 [2025-07-25]. https://unstrac
t.com/blog/comparing-approaches-for-using-1lms-for-structured-data-extraction-from-pdfs.
XUY, LIM, CUIL, et al. LayoutLM: Pre-training of Text and Layout for Document Image Un-
derstanding[C]/ /Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD). 2020: 1192-1200.

CamScanner: text and image scanning and recognition, PDF to Word, document format conversion,
online editor[EB /OL]. [2025-07-25]. https://www.camscanner.com/.

Adobe Scan mobile app: Now your scanner is in your back pocket.[EB /OL]. [2025-07-25]. https:
/Iwww.adobe.com/acrobat/mobile/scanner-app.html.

iCloud: Easily view and share your photos and videos stored in iCloud on any device and the web.
[EB/OL]. [2025-07-25]. https://www.icloud.com/photos.

Microsoft Lens for Android[EB /OL]. [2025-07-25]. https://support.microsoft.com/en-us/office
/microsoft-lens-for-android-ec124207-0049-4201-afaf-b5874a8e6f2b.

BHATTACHARY YA A, et al. Information Extraction from Visually Rich Documents using LLM-
based Organization[EB /OL]. 2023 [2025-07-27]. https://arxiv.org/abs/2505.13535.

Automatic Data Labeling with LLMs: Is GPT-4 Better than Humans?[EB /OL]. 2023 [2025-07-
25]. https://www.vellum.ai/blog/automatic-data-labeling-with-1Ims.

AHLUWALIA A, et al. Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
[EB/OL]. 2024 [2025-07-27]. https://arxiv.org/abs/2408.09236.

Limitations of OCR and the Rise of Intelligent Document Processing (IDP)[EB /OL]. 2025 [2025-
07-25]. https://docsumo.com/blog/ocr-limitations.

KRISHNAN P, JAWAHAR C V. HWNet v2: An efficient word image representation for hand-
written documents[C]/ /Proceedings of the International Conference on Document Analysis and
Recognition (ICDAR). 2016: 387-405.

SINGH C. CamScanner Android App With 100M Downloads Found Loaded With Malware
[EB/OL]. (2019-08-28) [2025-07-25]. https://fossbytes.com/camscanner- android- app- malwa
re-trojan/.

Lovable: Create apps and websites by chatting with AI[EB /OL]. [2025-07-28]. https://lovable.de
v/.

OLIVEIRA D A B, VIANA M P, de CARVALHO J M. Fast CNN-based document layout anal-
ysis[C]/ /Proceedings of the International Conference on Document Analysis and Recognition
(ICDAR). 2018: 1173-1180.

ZHANG Z. A Flexible New Technique for Camera Calibration[J/OL]. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334 [2025-07-27]. https://www.mic
rosoft.com/research/wp-content/uploads/2016/02/tr98-71.pdf.

HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision[M/OL]. 2nd ed.
Cambridge: Cambridge University Press, 2004: 88-92 [2025-07-27]. https://www.robots.ox.ac.uk
/~vgg/hzbook/.

BUKHARI S S, SHAFAIT F, BREUEL T M. The performance evaluation of feature-based rec-
tification on document images[C]/ /Proceedings of the International Conference on Document
Analysis and Recognition (ICDAR). 2008: 162-166.

79

https://unstract.com/blog/comparing-approaches-for-using-llms-for-structured-data-extraction-from-pdfs
https://unstract.com/blog/comparing-approaches-for-using-llms-for-structured-data-extraction-from-pdfs
https://www.camscanner.com/
https://www.adobe.com/acrobat/mobile/scanner-app.html
https://www.adobe.com/acrobat/mobile/scanner-app.html
https://www.icloud.com/photos
https://support.microsoft.com/en-us/office/microsoft-lens-for-android-ec124207-0049-4201-afaf-b5874a8e6f2b
https://support.microsoft.com/en-us/office/microsoft-lens-for-android-ec124207-0049-4201-afaf-b5874a8e6f2b
https://arxiv.org/abs/2505.13535
https://www.vellum.ai/blog/automatic-data-labeling-with-llms
https://arxiv.org/abs/2408.09236
https://docsumo.com/blog/ocr-limitations
https://fossbytes.com/camscanner-android-app-malware-trojan/
https://fossbytes.com/camscanner-android-app-malware-trojan/
https://lovable.dev/
https://lovable.dev/
https://www.microsoft.com/research/wp-content/uploads/2016/02/tr98-71.pdf
https://www.microsoft.com/research/wp-content/uploads/2016/02/tr98-71.pdf
https://www.robots.ox.ac.uk/~vgg/hzbook/
https://www.robots.ox.ac.uk/~vgg/hzbook/

I e B Al & References

[18]

[19]

[20]

[21]

[22]

CANNY J. A Computational Approach to Edge Detection[J/OL]. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1986, 8(6): 679-698 [2025-07-27]. https://doi.org/10.1109/TP
AMI.1986.4767851.

BROWN D C. Close-Range Camera Calibration[J/OL]. Photogrammetric Engineering, 1971,
37(8): 855-866 [2025-07-27]. https://www .asprs.org/wp-content/uploads/pers/1971journal/o
ct/1971_oct_855-866.pdf.

GONZALEZ R C, WOODS R E. Digital Image Processing[M]. 4th. Upper Saddle River, NIJ:
Pearson, 2018: 123-128, 159-163.

JACOB B, KLIGYS S, CHEN B, et al. Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference[C]/ /Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2018: 2704-2713.

CnOCR[EB/OL]. [2025-07-26]. https://github.com/breezedeus/CnOCR.

80

https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://www.asprs.org/wp-content/uploads/pers/1971journal/oct/1971_oct_855-866.pdf
https://www.asprs.org/wp-content/uploads/pers/1971journal/oct/1971_oct_855-866.pdf
https://github.com/breezedeus/CnOCR

IGATE A S Appendix 1: Customer Interview Questionnaire

Appendix 1 Customer Interview Questionnaire

1.1 User Background

These questions establish the respondent’s role and surface the variety and frequency of
documents they encounter. This anchors later responses in real use cases.
1. Describe your role (e.g., undergrad/grad student/faculty/staff) and types of documents
you handle daily.
2. What specific documents do you frequently process? (e.g., visa applications, reim-

bursement receipts, academic transcripts).

1.2 Document Handling Experience

These questions validate target pain points related to time-consuming tasks, disorganized
workflows, and areas of frustration.
3. Recall your most recent task for the document that consumes time:
(a) What were you trying to accomplish?
(b) Which steps took the longest? (e.g., data entry/formatting/revisions)
4. How do you manage physical and digital versions of documents? (If hybrid) How do
you link physical and digital copies?
5. When you need to quickly locate a specific document (e.g., “last year’s medical bill”):
What is your typical process? What hurdles arise?
6. If you were to describe the deepest frustration in document handling, what would it

be? (Use a concrete example)

1.3 Competitor and Workflow Pain Points

This set explores how users currently scan, extract, and organize documents using third-
party apps. It surfaces UX gaps and sticky behaviors.
7. When scanning documents with your phone:

(a) Which tools do you use? (e.g., CamScanner/Apple Photos/Google Lens)

81

IGATE A S Appendix 1: Customer Interview Questionnaire

(b) During your last use, which feature felt “cumbersome”?
8. How do you organize scanned documents? (If using albums/folders) How do you sep-
arate “life photos” from “critical documents™?
9. When copying text from scans:
(a) - Have you encountered OCR errors? Give an example (e.g., 0/0O confusion).
(b) How did you correct them?

10. Is there any feature you keep using despite dissatisfaction? Why?

1.4 Innovation Discovery

This final question probes for aspirational ideas and unmet needs to guide design inno-
vation.
1. Imagine a “perfect document assistant™:
(a) What three tasks must it accomplish for you?

(b) What currently impossible feature would surprise you?

82

IGATE A S Appendix 2: Affinity Map

Appendix 2 Affinity Map

Document Tool
Management . 00
Pain Points & EEED
8 10 6 10 9 2 2
nnin;
Document Organization File Export & sciool 2 Tool Security & Hardware
Discovery & Access Flexibility Rectieant Efficiency & Transparenc Integration
Challenges Systems il - Simplicity y Needs Frustrations
g "Event-based 9 . : “Printers are
"The hardest “Categorizing e "Adobe Scan is "Uses native Onenaolree frustrating:
part s figuring documens (e, e good because OCR(eg.) hardware-bound
i ey o its free and has Apple Photos) tools would (requires direct
mic) with subolders s increase trust connection) no
documents enables quick reused in past o for quick text e universal app for
e Tt events. watermarks. e and safety. Lokt
z e “Wishes printers
"Cloud sync for Wants exports in X .
"The information e editable formats "Appreciates ”“‘_’,m“?,‘e" Eprsss conamsout had mobile apps
¢ apps: 'No PDF ey a0 dota for seamless file
retrieval process. (e.g., images) auto-sync of
folder is critical : ot e] ey ofprsors pilesting:
is the most time- beyond PDF for e s v atev ransfer (since
G for cross-device S ALl have unrelated plerrer they only export
dccess,® ol features!™ et (L
“wnen
documents “Mac Finder's ~Cormsing rukiple R locks
: fast indexing documents o asingle oon o “Not all docs
are outside ek o s e (e, Adobe Scan need POF
beats Windows' example, | often need to. in China) require
my control, it's aym; conversion; OCR
e " certificates for suffices for short-
chaotic search. risiars” workarounds.” s
t time- -
consuming part is ey "Worries . 3
rememberinga file RPN ces e about phone /alues OCR for
exists but forgetting only critical By Sk text extraction
where it stored docs In iCloud- embedied form) requires EIEEHLE from documents
(eg. photo D) e oot 2 wants cleaner (rates necessity
o s rsing scans.")
e Sntcaser “Prefersprinter
s documencsored e scanned PDFs over
ot e e Manual retypes e "0 tools work wel
kil folder) instead of type. information from 5 5 e
sy ks b 200 based (e, TOERL scanned documents s e butfor andwriten
[Rrbhsiewiong Scores) duplcating because no OCR k ones epeily v
fles across events.” ool s used for text quaiyrreusabiity.” T
exvaction. mistakes”
“For physical "Rarely uses "Avoids mobile
documents, this Windows scanners (eg.
i Ll o POF text extracton Scanners (6 R S
) pear amscanner) el
often, so | don't and scans. mixed layouts i confuses 'O" wi
have a clear irrelevant areas.” P 0, and | don't
2 mages + text) e excessive ads." have a good way
process. bank statements, b
research papers. to fix ths.
Most lecronic forms
Relies on are saved onmy “\mainy use Camscanner
memory to find computer, but | only ‘“ Aoples| "‘“(" ‘”;‘"‘"" Desires future tools
files later when e e i o offer automated
specificstrage Gl watemaks, anzome form filing using
location is personalinfo." Ll e
forgotten.]
information
Hard to find suﬂe's':eo':;':i ;‘: Apple's camera
digial fles f e works wel for Desires future
title/keywords. e (LIS EL tools to support
are forgotten or stored temporarly sometnes voice control
don't match the ornotatall” edexs dont ey for initiatin
actual content perfectly.” 2
scans
Files are generaly
managed messiy. Camscanner's text Desires future tools
‘often put on desktop clarity in scans is. to automatically
temporariy when sometimes not as categorize scanned
neede thenintoa good asthe original documents

[
ig

physical document.
certificates) without
manual effort.

Doesn't organize ‘The Camscanner

o Wechat i
photos/documents rrang e onh
systematically they RO
often end up all 8

o erdu gl

batch processing.

Ilustration 2—-1 Affinity Map in Miro, see original link here

83

https://miro.com/app/board/uXjVIuSJGKE=/?share_link_id=225007777422

AR SN =2 (VA9 Appendix 3: Swimlane Diagram

Appendix 3 Swimlane Diagram

Below is the example flow of data and control if we want to parse a document A and a

form B, and use the current document database to fill form B (fill task C).

Ilustration 3—-1 Swimlane Diagram

84

IGATE A S Appendix 4: API Design

Appendix 4 API Design

4.1 Frontend Modules (Function Calls)

4.1.1 Camera/Gallery Module

il function capturelmage (source: "camera" | "gallery"): Image

* Captures/selects image from device camera or gallery.

* Returns raw image object.

4.1.2 Geometric Correction

| function correctGeometry (image: Image): Image

* Applies perspective correction and deskewing.

* Returns geometrically corrected image.

4.1.3 Color Enhancement

function enhanceColors (image: Image): Image

* Optimizes contrast, brightness and color balance.

* color-enhanced image.

4.1.4 Document Handler

function processDocument (enhancedImage: Image) : {

— encryptedDoc: string, sha256: string }

* Processes generic documents.

* Returns RSA-encrypted document and SHA256 hash.

4.1.5 Form Handler

i| function processForm(enhancedImage: Image, formType:

— string): { encryptedDoc: string, sha256: string }

85

IGATE A S Appendix 4: API Design

o function fillForm(formId: string): JSON

processForm:

* Processes structured forms using DB templates.
* Returns encrypted document and SHA256 hash.
fillForm:

* Fills the given form.

4.1.6 Frontend Database

1| // Document storage

o function saveDocument (sha256: string, metadata: JSON) :
- boolean

3] function getDocument (sha256: string): Document

4 function updateDocumentData (sha256: string, updates:

- JSON) : boolean

o // Form data storage
71 function saveFormData (formId: string, data: JSON) :
- boolean

3f function getFormData (formId: string): JSON

4.2 Backend Server (Flask)

Main entry point for processing requests and status checks.

4.2.1 Unified Processing Endpoint: /api/process

Handles all document processing types (doc/form/fill) through single interface.

86

IGATE A S Appendix 4: API Design

Key Type Required Description

client_id String (UUID) True Client identifier
type String True Processing type: “doc”, “form”, or "fill”
SHA256 String True SHA256 hash computed as per rules below
has_content Boolean True Indicates whether content payload is included
content String False AES(base64(actual json string))
aes_key String False RSA(real_aes_key)

SHA256 Computation:

SHA256 (content_string)

Content Payload Structure (After decryption):

// For doc/form

"to_process": ["base64_imgl", "base64d_img2"],
// For fill

"to_process": form_obij,

"file_1lib": {

"docs": [doc_obij_1, doc_obj_2, ...1,
"forms": [form obj_1, form obj_2, ...]
}
}
Validation:

1. has_content=true requires content field (else 400)
2. Computed SHA256 must match provided SHA256 (else 400)
3. Backend decrypts aes_key using private RSA key
4. Backend decrypts content using AES key then base64 decode

87

IGATE A S Appendix 4: API Design

Response:

"status": "processing|completed|error",
// Only for error status
"error_detail": "Description',

// Only for completed

"result": "base64 (AES (actual json string))"

Result Structures (after decryption):

{

{

//Doc type

"title": "a few words",

"tags": ["array", "of", "words"],

"description": "a few sentences",

"kv": {"keyl": "valuel", "key2": "value2"},
"related": [{"type": "xxx", "resource_id": "xxx"}]

//Form type

"title": "a few words",

"tags": ["array", "of", "words"],

"description": "a few sentences",

"kv": {"keyl": "valuel", "key2": "value2"},
"fields": ["fieldl", "field2"],

"related": [{"type": "xxx", "resource_id": "xxx"}]

88

20

21

22

23

24

25

26

27

28

29

30

31

32

IGATE A S Appendix 4: API Design

//Fill type
{
"fieldl":
{
"value": "valuel",
"source": {"type": "xxx", "resource_id": "xxx"
b
"field2":
{
"value": "value2",

"source": {"type": "xxx", "resource_id": "xxx"

Status Codes

Code Description

200 Result available (status=completed)
202 Processing in progress (status=processing)
400 Invalid input/SHA256 mismatch

500 Internal server error

Example Request

"client_id": "550e8400-e29b-41d4-a716-446655440000",
"type": "doc",

"SHA256": "9£86d081l...b4b9%a5",

"has_content": true,

"aes_key": "rsa encrypted"

"content": "baseb64 (AES (actual json string))"

89

&)

4.2.2 Example Response

Appendix 4: API Design

"status": "completed",

"result": {
"title": "Lease Agreement",
"tags": ["legal", "contract"],
"description":

— months",

"Standard residential lease agreement for 12

"kv'": |
"landlord": "Jane Smith",
"tenant": "John Doe",
"term": "12 months"
by
"related": [{"type": "form", "resource_id":

"yuid" }]

4.2.3 Endpoint: /api/clear

Clears processing results from the system.

Request Body (JSON):

Key Type Req Description

client_id String (UUID) True Client identifier

type String False Processing type

SHA256 String False Specific document hash to clear
Response:
{"status": "ok"}

90

Status Codes

Appendix 4: API Design

Code Description

200 Clearance successful
400 Missing client_id

500 Internal clearance error

4.3 Cache Server (Flask+SQLite)

Stores and retrieves encrypted processing results using composite keys (client_id, SHA256,

type).

4.3.1 Endpoint: /api/cache/query

Retrieves cached processing results.

Query Parameters:

Key Type Req Description

client_id String (UUID) True Client identifier

SHA256 String True Document hash

type String True doc, form, or fill
Response:

e Success (200): {’data”: ’ENCRYPTED_RESULT_STRING”}
* Not found (404): {”error”: "Cache entry missing”}

4.3.2 Endpoint: /api/cache/store

Stores processing results in cache.

91

Request Body (JSON):

Appendix 4: API Design

Key Type Req Description

client_id String (UUID) True Client identifier

type String True Processing type

SHA256 String True Document hash

data String True Encrypted result data
Response:

201 Created (Empty body)

4.3.3 Endpoint: /api/cache/clear

Clears cached entries.

Request Body (JSON):

Key Type Req Description

client_id String (UUID) True Client identifier

type String False Processing type

SHA256 String False Specific document hash to clear
Response:

{"status": "ok"}

4.4 OCR Server (CnOCR)

Performs text extraction from images.

92

4.4.1 Endpoint: /api/ocr/extract

Appendix 4: API Design

Request Body (JSON):
Key Type Req Description
image_data String (Base64) Decrypted image
Response:
{"text": "Extracted document text..."}
Status Code:
200 OK

4.5 Third-Party SDKs

1. LLM API Provider (Zhipu)
Format OCR data using LLM.
API Documentation: GLM-4, GLM-Z1

93

https://bigmodel.cn/dev/api/normal-model/glm-4
https://bigmodel.cn/dev/api/Reasoning-models/glm-z1

AR SN =2 (VA9 Appendix 5: Usability Testing Script

Appendix 5 Usability Testing Script

5.1 Greetings and Introduction

Hi! Thank you for helping us test DocuSnap today.

Before we start: We want to emphasize that this is a test of our app, not a test of you. You
can stop at any time for any reason. We encourage you to think out loud —share what you’re
seeing, what you’re trying to do, or anything that’s confusing. Please ask any questions you
have as you go along. We’ve already signed in with a test account, so you won’t need to create

or log in to an account during this session.

5.2 Research Questions

Our usability test aims to answer these questions:

* How easily can users capture and enhance a document image to make it readable?

* How easily can users extract key information (e.g., totals, dates) from a receipt or
invoice?

* How easily can users search for a specific document or piece of information using
natural language?

* How easily can users fill out a digital form with auto-suggested information from stored
documents?

* How confident do users feel about the security features when opening or sharing a

document?

5.3 Tasks

Task 1 Capture and Enhance
Upload or snap a photo of the sample receipt provided, then enhance it so the text is
clean and easy to read.

Task 2 Extract Key Information

Using the enhanced receipt, extract the total amount and vendor name.

94

AR SN =2 (VA9 Appendix 5: Usability Testing Script

Locate where this information is displayed or stored in the app.

Task 3 Search with Natural Language
Find a specific document by typing or saying a natural language query like “Show
unpaid invoices from June.”

Task 4 Auto-Fill a Form
Open a sample reimbursement form and auto-fill it with information from the receipt
you just processed.

Task 5 Check Document Security
Open a sensitive document, verify its encryption status, and share only the first page

with redacted totals.

5.4 Evaluation Metrics

Task 1 Complete in < 30 seconds; enhancement should improve legibility to at least 80%
clarity (based on team consensus).

Task 2 Find and identify total/vendor in < 3 taps or clicks.

Task 3 Locate target document using natural language search in < 20 seconds, with < 1
reformulation.

Task 4 Auto-fill > 80% of relevant fields without manual corrections.

Task 5 Complete encryption verification + redacted sharing in < 45 seconds, with partici-

pant expressing confidence in data security (qualitative metric).

5.5 Questionnaires
5.5.1 Pre-Test Questions

1. What is your current role or occupation?

2. How often do you manage physical or digital documents? (daily / weekly / rarely /
never)

3. Have you used any scanning or document management apps before? (yes/no, exam-
ples?)

4. Do you use a smartphone, tablet, or computer for document-related tasks?

95

AR SN =2 (VA9 Appendix 5: Usability Testing Script

5.5.2 Post-Test Questions

On a scale of 1-5, how easy was it to complete the tasks?
What parts of the app confused you or slowed you down?
What features did you find most helpful?

Do you feel your documents would be secure with this app? Why or why not?

A .

Any other feedback or suggestions?

96

Appendix 6: Testing Environment Screenshots

Appendix 6 Testing Environment Screenshots

. 0% M

& About emulated device

Basic info

Device name
sdk_gphone64_x86_64

Phone number
+1-555-123-4567

Legal & regulatory

Legal information

Device details

SIM status
T-Mobile

Model
sdk_gphone64_x86_64

IMEI
358240051111110

Android version
13

Device identifiers

(a) Android Studio emulator

15:23

< Detailed info and specs

D (=]

Device RAM ©
Redmi 14C 4,0+4.0 GB

O

CPU
Octa-core Max 2.00GHz

OS version
2.0.200.0VGTCNXM

Android version
15 | Android security update: 2025-06-01

Model
2409BRN2CC

Baseband version
MOLY.LR12A.R3.MPV315.P21

Kernel version
6.6.30-android15-8-gc338a81f088c-ab12786305-
4K

Hardware version
V1

IMEI 1

Tap to show info

(b) Physical device (Redmi 14C)

Ilustration 61 Application testing environments

97

AT R EF AN Research Projects and Publications

Research Projects and Publications during Undergraduate

Period

N/A

98

AR SN =2 (VA9 Acknowledgements

Acknowledgements

The completion of this thesis marks not only the end of an academic journey, but also
the culmination of a shared vision, countless late nights, and a deep commitment to creat-
ing something that might actually help real people manage the chaos of modern life—one
document at a time.

First and foremost, we would like to express our deepest gratitude to our advisor, Prof. Pi
Yibo, for his unwavering support, technical insights, and sharp intuition. His guidance chal-
lenged us to think beyond technical implementation and to pursue meaningful, user-centric
design. Thank you for pushing us to never settle for good enough. We are also sincerely
grateful to the UM-SJTU Joint Institute, not only for the academic rigor it instilled in us,
but also for fostering an environment that values curiosity, collaboration, and ambition.

To our interviewees and testers—your candid feedback, humorous anecdotes, and hon-
est frustrations shaped this project in more ways than you know. From stories about losing
passports to fumbling with tax receipts, you gave us the clarity and empathy we needed to
build DocuSnap with real people in mind.

To our team members—Yang Zijun, Peng Jingjia, Zhou Ziming, Qu Minyang, and
Tang Huijie—thank you for bringing your unique strengths to the table in the past 3 months.
From pixel-perfect UI designs and intricate app backend to elegent server architecture and
ironclad message protocols, this thesis is a product of every debate, whiteboard sketch, code
commit and 3 a.m. debugging marathon we shared. We learned not just how to build an
app, but how to build together.

Finally, to our families and friends—thank you for your patience, encouragement, and
understanding during our most intense weeks. Your support reminded us that while DocuS-
nap helps organize documents, you helped organize our lives.

This thesis is dedicated to everyone who has ever searched frantically for a scanned receipt
named IMG_RANDOM_NUMBER. jpg. We hope DocuSnap brings you a little more order—

and maybe a little less stress.

— JI-DeepSleep, The DocuSnap Team

99

DOCUSNAP: YOUR AI-POWERED PERSONAL
DOCUMENT ASSISTANT

This work presents DocuSnap, an innovative mobile application that transforms personal
document management through artificial intelligence. Addressing critical challenges in han-
dling physical IDs, receipts, and contracts, the system combines advanced computer vision
with large language model processing to deliver intelligent document organization. At its
core, DocuSnap implements a five-stage processing pipeline that begins with robust image
enhancement including perspective correction and glare reduction, followed by precise OCR
extraction, and culminating in semantic structuring that converts raw documents into orga-
nized JSON metadata with key-value pairs such as {“total”: “$49.99”, “date”: “2023-06-
157}.

The system’s semantic understanding capabilities enable automatic document catego-
rization and intelligent linking of related items, such as associating visas with corresponding
travel itineraries. Privacy is maintained through a unique client-server architecture that en-
sures no decrypted data is stored in the cloud using AES-256 and RSA-2048 encryption,
achieving GB/T 45574-2025 compliance.

Performance validation on budget hardware (Xiaomi Redmi 14C) demonstrated the sys-
tem’s efficiency, with sub-second Ul response times, 3-second image processing, and approx-
imately 20-second LLLM parsing latency for complex documents. Developed using Jetpack
Compose for the frontend, Flask for backend services and GLM 4 Plus as LLM, DocuSnap
supports all kinds of documents and forms with a very high accuracy. The intuitive interface,
refined through iterative user testing, provides seamless workflows from document capture to
secure retrieval, establishing a new standard for privacy-preserving document management

systems.

	Title Page
	Statutory Declaration
	Abstract
	摘 要
	ABSTRACT
	Contents
	Chapter 1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Existing Solutions and Their Drawbacks
	1.4 Proposed Solution

	Chapter 2 Design Specification
	2.1 Customer Requirements
	2.1.1 User Interview Questionnaire
	2.1.2 Customer Interviews
	2.1.3 Affinity Map
	2.1.4 Customer Profile

	2.2 Competitor Analysis
	2.2.1 Manual Photo Organization
	2.2.2 CamScanner
	2.2.3 Apple Photos
	2.2.4 Adobe Scan
	2.2.5 Microsoft Lens

	Chapter 3 App Design
	3.1 Storymap and Features
	3.2 Acceptance Criteria for Features
	3.2.1 Stage 1 Features
	3.2.2 Stage 2 Features
	3.2.3 Stage 3 Features
	3.2.4 Stage 4 Features

	3.3 Engine Architecture
	3.3.1 Model and Engine
	3.3.2 Data and Control Flow Diagram

	3.4 API Design
	3.4.1 Modular Frontend Architecture
	3.4.2 Secure Backend Services
	3.4.3 Supporting Infrastructure
	3.4.4 Security Architecture

	3.5 UI/UX Design
	3.5.1 Overall UI/UX Flow Architecture
	3.5.2 Home Page: Central Navigation Hub
	3.5.3 Search Stage: AI-Powered Document Discovery
	3.5.4 Image Processing: One-Tap Document Enhancement
	3.5.5 Document Handler: Intelligent Organization and Management
	3.5.6 Encryption: Security-Aware Data Storage

	3.6 Usability Testing
	3.6.1 Summary of Findings in Usability Test
	3.6.2 Change to Final UI/UX Design

	Chapter 4 App Development and Testing
	4.1 Front-end Development
	4.1.1 Design Pattern
	4.1.2 Individual UI Screen Design
	4.1.3 Navigation Controller
	4.1.4 ViewModel and UI-Service Integration
	4.1.5 Image Import and Processing
	4.1.6 Image Processing Logic and Algorithms

	4.2 Back-end Development
	4.2.1 In-App Database
	4.2.2 Server Backend

	4.3 Testing Results
	4.3.1 Testing Tool
	4.3.2 UI Testing
	4.3.3 Acceptance Testing for Features

	4.4 Performance Testing

	Chapter 5 Conclusions
	5.1 Discussion
	5.2 Main Conclusions
	5.3 Outlook

	References
	Appendix 1 Customer Interview Questionnaire
	Appendix 1: Customer Interview Questionnaire
	1.1 User Background
	1.2 Document Handling Experience
	1.3 Competitor and Workflow Pain Points
	1.4 Innovation Discovery

	Appendix 2 Affinity Map
	Appendix 2: Affinity Map
	Appendix 3 Swimlane Diagram
	Appendix 3: Swimlane Diagram
	Appendix 4 API Design
	Appendix 4: API Design
	4.1 Frontend Modules (Function Calls)
	4.1.1 Camera/Gallery Module
	4.1.2 Geometric Correction
	4.1.3 Color Enhancement
	4.1.4 Document Handler
	4.1.5 Form Handler
	4.1.6 Frontend Database

	4.2 Backend Server (Flask)
	4.2.1 Unified Processing Endpoint: /api/process
	4.2.2 Example Response
	4.2.3 Endpoint: /api/clear

	4.3 Cache Server (Flask+SQLite)
	4.3.1 Endpoint: /api/cache/query
	4.3.2 Endpoint: /api/cache/store
	4.3.3 Endpoint: /api/cache/clear

	4.4 OCR Server (CnOCR)
	4.4.1 Endpoint: /api/ocr/extract

	4.5 Third-Party SDKs

	Appendix 5 Usability Testing Script
	Appendix 5: Usability Testing Script
	5.1 Greetings and Introduction
	5.2 Research Questions
	5.3 Tasks
	5.4 Evaluation Metrics
	5.5 Questionnaires
	5.5.1 Pre-Test Questions
	5.5.2 Post-Test Questions

	Appendix 6 Testing Environment Screenshots
	Appendix 6: Testing Environment Screenshots
	Research Projects and Publications during Undergraduate Period
	Acknowledgements
	

