UNIVERSITY OF

MICHIGAN

Cloud Management and Infra-as-Code

Cloud resources are difficult to configure and manage. Previously, cloud
tenants have to employ extensive cloud/DevOps engineering teams to han-
dle obscure cloud service interfaces. Those interface or cloud management
tools include Command Line Interface (CLI), cloud API script and ClickOps on
cloud website portals. However, these tools are reckoned extremely ineffi-
cient and unreliable when managing large-scale production environments.

~ az vm create \
-—resource—-group MyResourceGroup \

VPC settings

ReqUESt ceources to create Infe --name MyVirtualMachine \
Create « v ' ing ——image UbuntulLTS \
aCtIDnS () WPC only D vPC and more —-Edmiﬂ—UEEI‘ﬂEI‘ﬂE jiﬂgjia 1"&
AZU re - ——generate-ssh—-keys \
——vnet—-name MyVirtualNetwork \
IPv4 CIDR block Info
Eletcrmnctheifartngl-"ar'::lth size of your WPC using CIDR notatio —-El,.lhnl?t M'}I’SUbnEt \L
DDDDD . ——public-ip-address "10.08.0.0" & \
R rIL::.-II:-lI:n:Ik'zer'u5'b=I:-e--.-.-e-=-|.-"||“:ani: 28 e nEtWU'rk vnet create \L
eturn o - o ——resource-group MyResourceGroup \
IPvE CIDR black info -—-name MyVirtualNetwork \
prDV]Slon O r'-.Il::IF"..rECIEIH.I:lluEk ——subnet-name MySubnetD
Al haba CIOUd t t D Amazon-provided |Pve CIDR block
Status Portal ClickOps CLI or API Scripts

“Infrastructure as Code” (IaC) paradigm arose to simplify cloud management.
Cloud [aC enables users to write only high-level code to express their In-
tended infrastructure, shielding them from low-level details about how the
underlying infrastructure is deployed. Among various mainstream laC plat-
forms, Terraform is the most popular one and also our initial target in Lilac.

Request W | Terraform: toolchain for declarative infra config

actioNs o
AZUI’E D - :: Puluml library for general program language
Return
provision
Al haba Cloud status

Lifting Cloud Infrastructure-as-Code

n laC deployment, 1aC compiler automatically calculates the difference
oetween our desire infra and current infra and evokes a sequence of cloud
API calls to modity our cloud resources.

Deployment
program o \
i @ Lifting \.

Cloud states

blue: deployment workflow, well-supported
red: lifting workflow, no official support

program

However, laC lifting, synthesis of laC program based on cloud state of ex-
Isting infra, is poorly supported. Lifting is crucial for cloud DevOps when
we need to bring existing resource, or "“brownfield infra’, back to the laC
management plan, which are historically created by other tools (CLI, API
script or ClickOps). Extensive industrial efforts have been invested to ad-
dress |aC lifting demand, but their outcomes are far from satistaction.

- — — e,— e, ,— e— — —_— — — — — — — — — — e — — — e— — e e e— e — e e e — e e e e e e e e e e e e - e— = - — — — ——

. 1aC platform attempt . Third-party developers attempts

Terraform
Import ‘E' " - Ter;:EEDg nita

. W4 support all Terraform resources | {4 resource-specific optimization
. X error-prone guesswork - X based on handcoded rules, still error-prone !

- XK manually write config blocks | 3 only support some popular resources

Summer Undergraduate Research Experience @ University of Michigan, College of Engineering

LiLAC: Automated Program Lifting for

Cloud Infrastructure-as-Code

Presented by: Jingjia Peng Advised by. Ang Chen, Xinyu Wang
Mentored by: YIming Qiu, Patrick Tser Jern Kon, Yibo Huang, Zheng Guo, Pinhan Zhao

Challenges Towards Automated laC Lifting

Step 1 topology lifting: we first figure out what laC resources we need in our
desired program, according to the matching between |aC resource blocks
and cloud resource entities.

« Challenge 1: Cloud resource graph is obscure to opbtain, due to unclear
definiiion or boundary of some resources, like nested sub-resource

(subnet) and connection as resource (disk attachment).

« Challenge 2: There is no one-to-one mapping between laC and clouad
resource graph. An asymmetric mapping example is as followed.

Terraform Resource Graph Azure Resource State

g

virtual network

virtual machine

OS disk

[
| attachment |

- . Deploy data 0S
virtual ’__>‘ disk disk

Although manually encoding all mapping rules seems possible, but the
complexity and diversity of cloud resources make it impractical.

Step 2 attribute lifting: we pop up attribute values for each 1aC resource
block. Although In different form, those values must be equivalent to those
in the cloud configuration while conforming [aC syntax rules.

We currently focus on stepl, whereas step 2 will be integrated later.

LiLAC Topology Lifting

- Knowledge Distillaion: We deploy incremental testsuit, where the only

difference between two sequential test is the addition of one |aC
resource. For each added resource, we can obtain the necessary rules to
fully capture its cloud counterpart with the aid of Al agent.

« Lifting Inference: In brownfield deployment, we first query from the

top-level resource such as resource group, and query its child resource by
related APls. Knowledge base helps us map observations in the query
chain back to laC counterparts.

Knowledge Distillation Lifting Inference

Incremental — IaC VM — Query from cloud T1acC
: —— |~ x7T7C > | == tOp—lEVE|
estsul -+ group group
Testsuit 1
resource l — 1t

Reach child cloud
via related VM u LaC
APIs | VH

Cloud Cloud Query
Query APls Al Agent

Guide T inference

———

Related laC resource
Related APlIs

h____-___________-______—_—_—-—_—_—_—_—__‘

H-h-—-—-—

Email: jingjla@umich.edu

mailto:youremail@msu.edu

