
LILAC: Automated Program Lifting for
Cloud Infrastructure-as-Code

Presented by: Jingjia Peng Advised by: Ang Chen, XinyuWang
Mentored by: Yiming Qiu, Patrick Tser Jern Kon, Yibo Huang, Zheng Guo, Pinhan Zhao

Cloud Management and Infra-as-Code

Cloud resources are difficult to configure and manage. Previously, cloud

tenants have to employ extensive cloud/DevOps engineering teams to han-

dle obscure cloud service interfaces. Those interface or cloud management

tools include Command Line Interface (CLI), cloud API script and ClickOps on

cloud website portals. However, these tools are reckoned extremely ineffi-

cient and unreliable when managing large-scale production environments.

“Infrastructure as Code” (IaC) paradigm arose to simplify cloud management.

Cloud IaC enables users to write only high-level code to express their in-

tended infrastructure, shielding them from low-level details about how the

underlying infrastructure is deployed. Among various mainstream IaC plat-

forms, Terraform is the most popular one and also our initial target in Lilac.

Lifting Cloud Infrastructure-as-Code

In IaC deployment, IaC compiler automatically calculates the difference

between our desire infra and current infra and evokes a sequence of cloud

API calls to modify our cloud resources.

However, IaC lifting, synthesis of IaC program based on cloud state of ex-

isting infra, is poorly supported. Lifting is crucial for cloud DevOps when

we need to bring existing resource, or “brownfield infra”, back to the IaC

management plan, which are historically created by other tools (CLI, API

script or ClickOps). Extensive industrial efforts have been invested to ad-

dress IaC lifting demand, but their outcomes are far from satisfaction.

Challenges Towards Automated IaC Lifting

Step 1 topology lifting: we first figure outwhat IaC resources we need in our

desired program, according to the matching between IaC resource blocks

and cloud resource entities.

Challenge 1: Cloud resource graph is obscure to obtain, due to unclear

definition or boundary of some resources, like nested sub-resource

(subnet) and connection as resource (disk attachment).

Challenge 2: There is no one-to-one mapping between IaC and cloud

resource graph. An asymmetric mapping example is as followed.

Although manually encoding all mapping rules seems possible, but the

complexity and diversity of cloud resources make it impractical.

Step 2 attribute lifting: we pop up attribute values for each IaC resource

block. Although in different form, those values must be equivalent to those

in the cloud configuration while conforming IaC syntax rules.

We currently focus on step1, whereas step 2 will be integrated later.

LILAC Topology Lifting

Knowledge Distillaion: We deploy incremental testsuit, where the only

difference between two sequential test is the addition of one IaC

resource. For each added resource, we can obtain the necessary rules to

fully capture its cloud counterpart with the aid of AI agent.

Lifting Inference: In brownfield deployment, we first query from the

top-level resource such as resource group, and query its child resource by

related APIs. Knowledge base helps us map observations in the query

chain back to IaC counterparts.

Summer Undergraduate Research Experience @ University of Michigan, College of Engineering Email: jingjia@umich.edu

mailto:youremail@msu.edu

